不等式|x-5|+|x+3|≥10的解集是( )
A.[-5,7] B.[-4,6]
C.(-∞,-5]∪[7,+∞) D.(-∞,-4]∪[6,+∞)
D
【解析】方法一:當(dāng)x≤-3時,|x-5|+|x+3|=5-x-x-3=2-2x≥10,∴x≤-4.
當(dāng)-3<x<5時,|x-5|+|x+3|=5-x+x+3=8≥10,不合題意,∴無解.
當(dāng)x≥5時,|x-5|+|x+3|=x-5+x+3=2x-2≥10,∴x≥6.
綜上可知,不等式的解集為(-∞,-4]∪[6,+∞),故選D.
方法二:由絕對值幾何意義知,在數(shù)軸上-3、5兩點距離為8,|x-5|+|x+3|表示到-3、5距離和,當(dāng)點。4或6時到-3、5距離和均為10,兩點之外都大于10,故x≤-4或x≥6,
解集為(-∞,-4]∪[6,+∞).
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標·通用版限時集13講練習(xí)卷(解析版) 題型:選擇題
若直線ax-by+1=0過圓C:x2+y2+2x-4y+1=0的圓心,則ab的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標·通用版限時集10講練習(xí)卷(解析版) 題型:選擇題
已知數(shù)列{an}的前n項和為Sn,把{Sn}的前n項和稱為“和諧和”,用Hn來表示.對于an=3n,其“和諧和”Hn=( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講 練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+2x.
(1)解關(guān)于x的不等式g(x)≥f(x)-|x-1|;
(2)如果對?x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講 練習(xí)卷(解析版) 題型:填空題
若對任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,則實數(shù)x的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題
設(shè)極點與坐標原點重合極軸與x軸正半軸重合,已知直線l的極坐標方程為:ρsin=a,a∈R,圓C的參數(shù)方程是 (θ為參數(shù)).若圓C關(guān)于直線l對稱,則a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標系與參數(shù)方程練習(xí)卷(解析版) 題型:選擇題
在極坐標系中,圓ρ=-2sin θ的圓心的極坐標是( )
A. B. C.(1,0) D.(1,π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
如圖,在幾何體ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,且AE=MC=.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=loga(3-ax).
(1)當(dāng)x∈[0,2]時,函數(shù)f(x)恒有意義,求實數(shù)a的取值范圍.
(2)是否存在這樣的實數(shù)a,使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為1?如果存在,試求出a的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com