在正三棱柱中,若AB=2,則點A到平面的距離為(  )
A.B.C.D.
B

試題分析:取BC中點D,連接,過A作,,所求距離為AE,因為AB=2, 
,所求距離為
點評:求點到面的距離常用方法有:做垂線段,求垂線段長度;等體積法求三棱錐的高;向量法利用坐標(biāo)代入公式計算
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,底面△為正三角形的直三棱柱中,,,的中點,點在平面內(nèi),

(Ⅰ)求證:;  
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面,直線,直線,有下面四個命題:
(1)     (2)
(3)     (4)
 其中正確的是(   )
A.(1)與(2)  B.(3)與(4)  C.(1)與(3)D.(2)與(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四面體的六條邊均相等,分別是的中點,則下列四個結(jié)論中不成立的是 (    )      
                                                            
A.平面平面B.平面
C.//平面D.平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體ABCD—A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.

(1)求GH長的取值范圍;
(2)當(dāng)GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是平面內(nèi)的一條定直線,是平面外的一個定點,動直線經(jīng)過點且與角,則直線與平面的交點的軌跡是
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點E、F分別是棱PB、邊CD的中點.(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是直線,是平面,給出下列命題:
①若,,,則
②若,,則
③若m,n,m,n,則
④若,,,則
其中正確的命題是(   )。
A.①②B.②④C.②③D.③④

查看答案和解析>>

同步練習(xí)冊答案