正方體ABCD,A1B1C1D1中,E、F分別是BB1、CC1的中點(diǎn),則AE、BF所成的角的余弦值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:取DD1的中點(diǎn)G,∠GAD為AE、BF所成的角,在△GAD中,用勾股定理求得三邊長(zhǎng),余弦定理求得cos∠EAG 的值.
解答:取DD1的中點(diǎn)G,由GA∥BF 且GA=BF 可得∠GAD為AE、BF所成的角,設(shè)正方體棱長(zhǎng)為1,
△GAD中,利用勾股定理可得AE=AG==. 又EG=,
由余弦定理可得 2=+-2××cos∠EAG,∴cos∠EAG=,
故選 C.
點(diǎn)評(píng):本題考查異面直線所成的角的定義和求法,找出異面直線所成的角是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中.
(1)求:點(diǎn)A到平面BD1的距離;
(2)求點(diǎn)A1到平面AB1D1的距離;
(3)求平面AB1D1與平面BC1D的距離;
(4)求直線AB到CDA1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1的棱長(zhǎng)為a.
求:
(1)二面角A-BD-A1的正切值;
(2)AA1與平面A1BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河?xùn)|區(qū)一模)已知:正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(Ⅰ)求棱AA1與平面A1BD所成的角;
(Ⅱ)求二面角B-A1D-B1的大;
(Ⅲ)求四面體A1-BB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若棱長(zhǎng)為1的正方體ABCD-A1B1C1D1 的八個(gè)頂點(diǎn)都在球O的表面上,則A,A1兩點(diǎn)之間的球面距離為
3
2
arccos
1
3
3
2
arccos
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆云南省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

正方體ABCD-A1 B1 C1 D1中,BB1與平面ACD1所成角的余弦值為    (        )

 (A)                    (B)             (C)           (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案