【題目】某健康社團(tuán)為調(diào)查居民的運(yùn)動情況,統(tǒng)計了某小區(qū)100名居民平均每天的運(yùn)動時長(單位:小時)并根據(jù)統(tǒng)計數(shù)據(jù)分為六個小組(所調(diào)查的居民平均每天運(yùn)動時長均在內(nèi)),得到的頻率分布直方圖如圖所示.

1)求出圖中的值,并估計這名居民平均每天運(yùn)動時長的平均值及中位數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);

2)為了分析出該小區(qū)居民平均每天的運(yùn)動量與職業(yè)、年齡等的關(guān)系,該社團(tuán)按小組用分層抽樣的方法抽出20名居民進(jìn)一步調(diào)查,試問在時間段內(nèi)應(yīng)抽出多少人?

【答案】1,平均值為2.4,中位數(shù)2.4 24

【解析】

1)頻率分布直方圖中各組的頻率之和為1,能求出.利用平均值及中位數(shù)計算公式即可得出平均值及中位數(shù).

2)先求得時間段的頻率,由此能求出時間段內(nèi)的人數(shù).

1)由

解得.

100名居民運(yùn)動時長的平均值為

,

由圖可知中位數(shù)內(nèi),因?yàn)?/span>,

解得.

2)由題知,時間段的頻率為

則應(yīng)抽出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。

A.2017年第一季度GDP增速由高到低排位第5的是浙江。

B.與去年同期相比,2017年第一季度的GDP總量實(shí)現(xiàn)了增長.

C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D.去年同期河南省的GDP總量不超過4000億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆安徽省合肥市高三第一次教學(xué)質(zhì)量檢測】一家大型購物商場委托某機(jī)構(gòu)調(diào)查該商場的顧客使用移動支付的情況.調(diào)查人員從年齡在內(nèi)的顧客中,隨機(jī)抽取了180人,調(diào)查結(jié)果如表:

1)為推廣移動支付,商場準(zhǔn)備對使用移動支付的顧客贈送1個環(huán)保購物袋.若某日該商場預(yù)計有12000人購物,試根據(jù)上述數(shù)據(jù)估計,該商場當(dāng)天應(yīng)準(zhǔn)備多少個環(huán)保購物袋?

2)某機(jī)構(gòu)從被調(diào)查的使用移動支付的顧客中,按分層抽樣的方式抽取7人作跟蹤調(diào)查,并給其中2人贈送額外禮品,求獲得額外禮品的2人年齡都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線

C:(y-2)2-x2=1交于A、B兩點(diǎn).

(1)求|AB|的長;

(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)O為極,z軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

()求曲線C的普通方程和直線的直角坐標(biāo)方程;

()設(shè)點(diǎn).若直線與曲線C相交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個,一堆 3 個,要把積木一塊一塊的全部放到某個盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點(diǎn).

1)求橢圓的方程.

2)若直線的斜率為,且直線交橢圓兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與重合的一個點(diǎn).

1)若圓柱的軸截面是正方形,當(dāng)點(diǎn)是弧的中點(diǎn)時,求異面直線的所成角的大;

2)當(dāng)點(diǎn)是弧的中點(diǎn)時,求四棱錐與圓柱的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為配合國家“一帶一路”戰(zhàn)略,發(fā)展城市旅游經(jīng)濟(jì),擬在景觀河道的兩側(cè),沿河岸直線修建景觀(橋),如圖所示,河道為東西方向,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將接通.已知,,河道兩側(cè)的景觀道路修復(fù)費(fèi)用為每米萬元,架設(shè)在河道上方的景觀橋部分的修建費(fèi)用為每米萬元.

(1)若景觀橋長時,求橋與河道所成角的大。

(2)如何景觀橋的位置,使矩形區(qū)域內(nèi)的總修建費(fèi)用最低?最低總造價是多少?

查看答案和解析>>

同步練習(xí)冊答案