【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線

C:(y-2)2-x2=1交于A、B兩點.

(1)求|AB|的長;

(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為,求點P到線段AB中點M的距離.

【答案】(1);(2)

【解析】試題分析:

(1)直線的參數(shù)方程是標(biāo)準(zhǔn)參數(shù)方程,因此可把直線參數(shù)方程代入曲線的方程,由利用韋達定理可得;(2)點極坐標(biāo)化為直角坐標(biāo),知為直線參數(shù)方程的定點,因此利用參數(shù)的幾何意義可得

試題解析:

(1)把直線的參數(shù)方程對應(yīng)的坐標(biāo)代入曲線方程并化簡得7t2+60t﹣125=0

設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則

(2)由P的極坐標(biāo)為,可得,

∴點P在平面直角坐標(biāo)系下的坐標(biāo)為(﹣2,2),

根據(jù)中點坐標(biāo)的性質(zhì)可得AB中點M對應(yīng)的參數(shù)為

∴由t的幾何意義可得點PM的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=

(1)若f(x)的值域為R,求實數(shù)a的取值范圍;

(2)若函數(shù)f(x)在(﹣∞,1)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某居民區(qū)的物業(yè)部門每月向居民收取衛(wèi)生費,計費方法如下:3人和3人以下的住戶,每戶收取5元;超過3人的住戶,每超出1人加收1.2元.設(shè)計一個算法,根據(jù)輸入的人數(shù),計算應(yīng)收取的衛(wèi)生費,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在120°的二面角α--β的兩個面內(nèi)分別有點A,B,A∈α,B∈β,A,B到棱l的距離AC,BD分別是2,4,且線段AB=10.

(1)求C,D間的距離;

(2)求直線AB與平面β所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.

(1)求證:AD⊥PB;

(2)已知點M是線段PC上,MC=λPM,且PA平面MQB,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)已知曲線C的參數(shù)方程是 (φ為參數(shù),a>0),直線l的參數(shù)方程是 (t為參數(shù)),曲線C與直線l有一個公共點在x軸上,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立坐標(biāo)系.
(1)求曲線C普通方程;
(2)若點 在曲線C上,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10AA1=8,點EF分別在A1B1,D1C1上,A1E=D1F=4,過點E,F的平面α與此長方體的面相交,交線圍成一個正方形.

1)在圖中畫出這個正方形(不必說明畫法和理由);

2)求直線AF與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點P為橢圓C: =1(a>b>0)的下頂點,M,N在橢圓上,若四邊形OPMN為平行四邊形,α為直線ON的傾斜角,若α∈( , ],則橢圓C的離心率的取值范圍為( )
A.(0, ]
B.(0, ]
C.[ , ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在三棱錐P﹣ABC中,PA⊥面ABC,ACBC,且PA=AC=BC=1,點EPC的中點,作EFPBPB于點F.

(Ⅰ)求證:PB⊥平面AEF;

(Ⅱ)求二面角A﹣PB﹣C的大。

查看答案和解析>>

同步練習(xí)冊答案