10.高一(23)班8個(gè)同學(xué)參加獨(dú)唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別為( 。
A.91.5和91.5B.91.5和92C.91和91.5D.92和92

分析 根據(jù)中位數(shù)和平均數(shù)的定義分別進(jìn)行求解即可.

解答 解:將數(shù)據(jù)從小到大重新排列為87,89,90,91,92,93,94,96,
則中位數(shù)為$\frac{91+92}{2}$=91.5,
平均數(shù)為$\frac{1}{8}$(87+89+90+91+92+93+94+96)=90+$\frac{1}{8}$(-3-1+0+1+2+3+4+6)=90+$\frac{12}{8}$=90+1.5=91.5,
故選:A

點(diǎn)評(píng) 本題主要考查莖葉圖的應(yīng)用,根據(jù)中位數(shù)和平均數(shù)的定義分別進(jìn)行計(jì)算是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an},那么“對(duì)于任意的n∈N*,點(diǎn)Pn(n,an)都在曲線y=3x上”是“數(shù)列{an}為等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某學(xué)校在平面圖為矩形的操場(chǎng)ABCD內(nèi)進(jìn)行體操表演,其中AB=40,BC=16,O為AB上一點(diǎn),且BO=8,線段OC、OD、MN為表演隊(duì)列所在位置(M,N分別在線段OD、OC上),點(diǎn)P為領(lǐng)隊(duì)位置,且P到BC、CD的距離均為12,記OM=d,我們知道當(dāng)△OMN面積最小時(shí)觀賞效果最好.
(1)當(dāng)d為何值時(shí),P為隊(duì)列MN的中點(diǎn)?
(2)怎樣安排M的位置才能使觀賞效果最好?求出此時(shí)d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={y|y=x},N={x|x2+y2=1},則M∩N=( 。
A.{($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}B.{(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某公司對(duì)新招聘的40名業(yè)務(wù)人員迸行業(yè)務(wù)培訓(xùn),現(xiàn)按新業(yè)務(wù)員的年齡(單位:歲)進(jìn)行分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)培訓(xùn)中有一個(gè)傳球活動(dòng):音樂響起,按特定順序開始第1次傳一個(gè)球,音樂停時(shí),球在誰手,誰就表演一個(gè)節(jié)目,表演完畢后,從表演者開始下一次傳球,如此進(jìn)行3次,若以頻率為概率,且停音樂是隨機(jī)的,求至少有2次表演者的年齡在[20,30)的概率;
(2)培訓(xùn)前決定在年齡在[35,45]的新業(yè)務(wù)員中任意選出3名小組長,設(shè)年齡在[40,45]中選取的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對(duì)于所有實(shí)數(shù)x,不等式x2log2$\frac{4(a+1)}{a}$+2xlog2$\frac{2a}{a+1}$+log2$\frac{(a+1)^{2}}{4{a}^{2}}$>0恒成立,則a的取值范圍是( 。
A.(0,1)B.(1,+∞)C.(0,1]D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓$\frac{x^2}{9}+\frac{y^2}{8}=1$的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上一點(diǎn),且$\overrightarrow{{F_1}{F_2}}•\overrightarrow{P{F_2}}=0$,則|PF1|等于( 。
A.$\frac{10}{3}$B.$\frac{5}{3}$C.$\frac{7}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=6-12x+x3
(1)求函數(shù)f(x)的極值;
(2)求過點(diǎn)P(3,-3)并且與函數(shù)f(x)圖象相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0\;,\;\;b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,且焦點(diǎn)與橢圓$\frac{x^2}{36}+\frac{y^2}{2}=1$的焦點(diǎn)相同,離心率為$e=\frac{{\sqrt{34}}}{5}$,若雙曲線的左支上有一點(diǎn)M到右焦點(diǎn)F2的距離為18,N為MF2的中點(diǎn),O為坐標(biāo)原點(diǎn),則|NO|等于( 。
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案