【題目】已知函數(shù).
當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;
若不等式在上恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)見(jiàn)解析; (2).
【解析】
(1)根據(jù)函數(shù)單調(diào)性的證明的定義法,取值,做差,若, ,判符號(hào);(2)方法一,將問(wèn)題等價(jià)于 恒成立,轉(zhuǎn)化為軸動(dòng)區(qū)間定的問(wèn)題;方法二,變量分離,轉(zhuǎn)化為 恒成立,轉(zhuǎn)化為函數(shù)求最值問(wèn)題.
(1)當(dāng)時(shí),,此時(shí)在上單調(diào)遞增,證明如下:
對(duì)任意的,,若,
,
由,故有:,,
因此:,,
故有在上單調(diào)遞增;
(2)方法一:不等式在上恒成立
,
取,對(duì)稱(chēng)軸
當(dāng)時(shí),對(duì)稱(chēng)軸,
∴在上單調(diào)遞增, ,
故滿(mǎn)足題意,
當(dāng)時(shí),對(duì)稱(chēng)軸,
又在上恒成立,
故
解得:,
故
綜上所述,實(shí)數(shù)的取值范圍為.
方法二:不等式在上恒成立
。
取
由結(jié)論:定義在上的函數(shù),當(dāng)且僅當(dāng)時(shí)取得最小值.
故 。
當(dāng)且僅當(dāng),即時(shí)函數(shù)取得最小值.
故,即實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最大值;
(2)當(dāng)時(shí),函數(shù)有最小值. 記的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對(duì)任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2﹣x1=2,當(dāng)x∈(x1 , x2)時(shí),g(x)=﹣f(x)+2(x2﹣x)的最大值為,當(dāng)a≥2時(shí),求h(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線(xiàn)的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線(xiàn)(直線(xiàn)的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線(xiàn)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾位同學(xué)在研究函數(shù) 時(shí),給出了下面幾個(gè)結(jié)論:
①的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是;
②若,則一定有;
③函數(shù)的值域?yàn)?/span>;
④若規(guī)定,,則對(duì)任意恒成立.
上述結(jié)論中正確的是____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的面積為,且與軸、軸分別交于兩點(diǎn).
(1)求圓的方程;
(2)若直線(xiàn)與線(xiàn)段相交,求實(shí)數(shù)的取值范圍;
(3)試討論直線(xiàn)與(1)小題所求圓的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一網(wǎng)站營(yíng)銷(xiāo)部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如下表:
若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱(chēng)為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱(chēng)為“網(wǎng)購(gòu)探者”.已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3.
(1)確定的值,并補(bǔ)全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日被評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn): 的左右焦點(diǎn)分別為、, 為右支上的點(diǎn),線(xiàn)段交的左支于點(diǎn),若是邊長(zhǎng)等于的等邊三角形,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為( )
A. B. C. D.
【答案】A
【解析】
即雙曲線(xiàn)的標(biāo)準(zhǔn)方程為,選A.
【題型】單選題
【結(jié)束】
11
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com