【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
【答案】(1)(2)
【解析】試題分析:(1)由的周長為,可得,由直線的斜率為可得,
由直線的斜率,得,結合求出從而可得橢圓的標準方程;(2)先求出,由可得,直線的方程為,則,聯(lián)立,所以,根據(jù)韋達定理列出關于的方程求解即可.
試題解析:(1)因為的周長為,所以,即,
由直線的斜率,得,
因為,所以,
所以橢圓的標準方程為.
(2)由題意可得直線方程為,聯(lián)立得 ,解得,所以, 因為,即,
所以,當直線的斜率為時,不符合題意,
故設直線的方程為,由點在點的上方,則,聯(lián)立,所以,所以,消去得 ,所以,得,
又由畫圖可知不符合題意,所以,
故直線的斜率為.
【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關系和數(shù)量積公式,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設方程:根據(jù)上述判斷設方程或 ;③找關系:根據(jù)已知條件,建立關于、、的方程組;④得方程:解方程組,將解代入所設方程,即為所求.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,且對任意的x,y∈R有f(x+y)=f(x)+f(y)當時,,f(1)=1
(1)求f(0),f(3)的值;
(2)判斷f(x)的單調(diào)性并證明;
(3)若f(4x-a)+f(6+2x+1)>2對任意x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=-1.其中>0且≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解關于x的不等式-1<f(x-1)<4.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:對數(shù)有意義;命題q:實數(shù)t滿足不等式.
(Ⅰ)若命題p為真,求實數(shù)的取值范圍;
(Ⅱ)若命題p是命題q的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】湖南省某自來水公司每個月(記為一個收費周期)對用戶收一次水費,收費標準如下:當每戶用水量不超過30噸時,按每噸2元收;當該用戶用水量超過30噸但不超過50噸時,超出部分按每噸3元收;當該用戶用水量超過50噸時,超出部分按每噸4元收取。
(1)記某用戶在一個收費周期的用水量為噸,所繳水費為元,寫出關于的函數(shù)解析式;
(2)在某一個收費周期內(nèi),若甲、乙兩用戶所繳水費的和為214元,且甲、乙兩用戶用水量之比為3:2,試求出甲、乙兩用戶在該收費周期內(nèi)各自的用水量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)是上的減函數(shù),,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)單調(diào)遞增,求實數(shù)的取值范圍;
(3)當時,有最大值1,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
當時,試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;
若不等式在上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:若關于的方程無實數(shù)根,則;命題:若關于的方程有兩個不相等的正實數(shù)根,則.
(1)寫出命題的否命題,并判斷命題的真假;
(2)判斷命題“且”的真假,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com