10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{22}{23}$B.$\frac{21}{22}$C.$\frac{20}{21}$D.$\frac{19}{20}$

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{21×22}$,
∵S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{21×22}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{21}$-$\frac{1}{22}$=1-$\frac{1}{22}$=$\frac{21}{22}$,
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.以橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的中心為頂點(diǎn),左焦點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是( 。
A.x2=8yB.y2=16xC.x2=-8yD.y2=-16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知$f(x)=lg\frac{1-x}{1+x}$.
(1)判斷f(x)的奇偶性,并說(shuō)明理由;
(2)設(shè)f(x)的定義域?yàn)镈,a,b∈D.求$f(a)+f(b)-f(\frac{a+b}{1+ab})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=sinx-cosx,則$f(\frac{π}{12})$=$-\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+tcosα\\ y=1+tsinα\end{array}\right.\;\;\;(t$為參數(shù),0<α<π),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)P的直角坐標(biāo)為P(2,1),直線l與曲線C相交于A、B兩點(diǎn),并且$|PA|•|PB|=\frac{28}{3}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.先后拋擲兩枚均勻的正方體骰子,觀察向上的點(diǎn)數(shù),問(wèn):
(1)共有多少種不同的結(jié)果?
(2)所得點(diǎn)數(shù)之和是11的概率是多少?
(3)所得點(diǎn)數(shù)之和是4的倍數(shù)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在長(zhǎng)為6cm的線段上任取一點(diǎn)P,使點(diǎn)P到線段兩段點(diǎn)的距離都大于2cm的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.三角形△ABC三邊a,b,c滿足${a^2}+\frac{1}{2}ab={c^2}-{b^2}$,則角C的值為$π-arccos\frac{1}{4}$.(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,四邊形ABCD是平行四邊形,三角形ADP中AD=AP=5,PD=6,M、N分別是AB,PC的中點(diǎn).
(1)求證:MN∥平面PAD.
(2)求異面直線MN與AD夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案