(05年湖北卷文)(12分)

某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時不換.

   (Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;

   (Ⅱ)在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;

   (Ⅲ)當(dāng)p1=0.8,p2=0.3時,求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結(jié)果保留兩個有效數(shù)字).

 

解析:(I)在第一次更換燈泡工作中,不需要換燈泡的概率為需要更換2只燈泡的概率為

(II)對該盞燈來說,在第1、2次都更換了燈泡的概率為(1-p12;在第一次未更換燈泡而在第二次需要更換燈泡的概率為p1(1-p2),故所求的概率為

(III)至少換4只燈泡包括換5只和換4只兩種情況,換5只的概率為p5(其中p為(II)中所求,下同)換4只的概率為(1-p),故至少換4只燈泡的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”――目測、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨立.

(1)求甲、乙、丙三個同學(xué)中恰有一人通過復(fù)檢的概率;

(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為,求隨機(jī)變量的期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A=, =

(1)求A的特征值、及對應(yīng)的特征向量;  

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中一模理) (14分)

由函數(shù)確定數(shù)列,,若函數(shù)的反函數(shù) 能確定數(shù)列,則稱數(shù)列是數(shù)列的“反數(shù)列”。

(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項公式;

(2)對(1)中,不等式對任意的正整數(shù)恒成立,求實數(shù)的范圍;

(3)設(shè),若數(shù)列的反數(shù)列為,的公共項組成的數(shù)列為;求數(shù)列項和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年遼寧卷)(12分)

已知函數(shù).設(shè)數(shù)列滿足,,數(shù)列滿足

,,

(Ⅰ)用數(shù)學(xué)歸納法證明;(Ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年湖北卷文)(12分)

設(shè)數(shù)列的前n項和為Sn=2n2,為等比數(shù)列,且

   (Ⅰ)求數(shù)列的通項公式;

   (Ⅱ)設(shè),求數(shù)列的前n項和Tn.

查看答案和解析>>

同步練習(xí)冊答案