14.如圖,直線PO與直徑為4的圓O交于B,C兩點(diǎn),且PC=2,直線PA切圓O于點(diǎn)A
(Ⅰ)證明:AB=AP;
(Ⅱ)若AM⊥PB,延長MC交AP于點(diǎn)N,求證:MN⊥PA.

分析 (Ⅰ)求出∠P=∠B=30°,即可證明:AB=AP;
(Ⅱ)由(Ⅰ)可知,∠M=∠B=30°=∠P,利用AM⊥PB,證明:MN⊥PA.

解答 證明:(Ⅰ)∵直線PO與直徑為4的圓O交于B,C兩點(diǎn),且PC=2,直線PA切圓O于點(diǎn)A,
∴PA2=PC•PB=12,
∴PA=2$\sqrt{3}$,
∴∠P=30°,∠AOP=60°,
∵OA=OB,
∴∠B=30°,
∴∠P=∠B,
∴AB=AP;
(Ⅱ)由(Ⅰ)可知,∠M=∠B=30°=∠P,
∵AM⊥PB,
∴MN⊥PA.

點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查等腰三角形的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知θ∈(0,π),則y=$\frac{1}{{{{sin}^2}θ}}+\frac{9}{{{{cos}^2}θ}}$的最小值為( 。
A.6B.10C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$,且曲線f(x)在點(diǎn)(e,f(e))處的切線與直線y=e2x+e垂直(其中e為自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上單調(diào),求實(shí)數(shù)m的取值范圍;
(2)設(shè)g(x)=(x+1)•f(x),求證:當(dāng)x>1時(shí),g(x)>$\frac{2(e+1){e}^{x}}{e(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的極坐標(biāo)方程是ρ+4cosθ+$\frac{5}{2ρ}$=0.以極點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系xOy中,曲線C2:x2+$\frac{{y}^{2}}{9}$=1
(Ⅰ)寫出C1的直角坐標(biāo)方程和C2的參數(shù)方程;
(Ⅱ)設(shè)M,N分別為C1,C2的任意一點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線C的極坐標(biāo)方程為ρ═4sin(θ-$\frac{π}{3}$),以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系xOy.
(1)求曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)P在曲線C上,點(diǎn)Q的直角坐標(biāo)是(cosφ,sinφ),其中(φ∈R),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若對(duì)任意x>0,$\frac{x}{{{x^2}+3x+1}}$≤a恒成立,則a的最小值是( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在棱長為2的正方體ABCD-A′B′C′D′中,E、F分別是A′B′和AB的中點(diǎn).求:
(1)異面直線A′F與CE所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)直線A′F與平面ABC′D′所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(3)二面角A-CE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,圓內(nèi)接四邊形ABCD中,BD是圓的直徑,AB=AC,延長AD與BC的延長線相交于點(diǎn)E,作EF⊥BD于F.
(1)證明:EC=EF;
(2)如果DC=$\frac{1}{2}$BD=3,試求DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),若函數(shù)y=f(x)的圖象與x軸的任意兩個(gè)相鄰交點(diǎn)間的距離為π,當(dāng)x=$\frac{π}{3}$時(shí),函數(shù)y=f(x)取得最大值2.
(1)求函數(shù)f(x)的解析式,并寫出它的單調(diào)增區(qū)間;
(2)若x∈[-$\frac{π}{3}$,$\frac{π}{2}}$],求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案