3.如圖,圓內(nèi)接四邊形ABCD中,BD是圓的直徑,AB=AC,延長(zhǎng)AD與BC的延長(zhǎng)線(xiàn)相交于點(diǎn)E,作EF⊥BD于F.
(1)證明:EC=EF;
(2)如果DC=$\frac{1}{2}$BD=3,試求DE的長(zhǎng).

分析 (1)通過(guò)證明△DEF≌△DEC,即可證明:EC=EF;
(2)如果DC=$\frac{1}{2}$BD=3,證明∠BDC=∠EDC,利用等腰三角形的性質(zhì)求DE的長(zhǎng).

解答 (1)證明:由圓內(nèi)接四邊形的性質(zhì),可求得∠ABC=∠CDE;
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ACB=∠ADB=∠EDF,
∴∠CDE=∠EDF,
∵BD是圓的直徑,
∴BC⊥DC,
∵EF⊥BD,DE=DE,
∴△DEF≌△DEC,
∴EC=EF;
(2)解:∵DC=$\frac{1}{2}$BD=3,BC⊥DC,
∴∠BDC=60°,
∴∠BAC=60°,
∴∠ABC=60°,
∴∠EDC=60°,
∴∠BDC=∠EDC,
∵DC⊥BC,
∴DE=BD=6.

點(diǎn)評(píng) 本題考查三角形全等的證明,考查等腰三角形的性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)y=f(x)在區(qū)間[a,b]的圖象如圖所示,則其導(dǎo)函數(shù)y=f′(x)在該區(qū)間( 。
A.先遞減再遞增B.先遞增再遞減
C.先遞增再遞減最后又遞增D.先遞減再遞增最后又遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,直線(xiàn)PO與直徑為4的圓O交于B,C兩點(diǎn),且PC=2,直線(xiàn)PA切圓O于點(diǎn)A
(Ⅰ)證明:AB=AP;
(Ⅱ)若AM⊥PB,延長(zhǎng)MC交AP于點(diǎn)N,求證:MN⊥PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.正方形ABCD-A1B1C1D1中,二面角B-A1C-A的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線(xiàn)M的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}$,(α為參數(shù)),α∈[0,π].若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)N的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(其中m為常數(shù))
(Ⅰ)求曲線(xiàn)M與曲線(xiàn)N的普通方程;
(Ⅱ)若曲線(xiàn)M與曲線(xiàn)N有兩個(gè)公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若矩陣A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$的逆矩陣為$[\begin{array}{l}{-3}&{2}\\{2}&{-1}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,自圓O外一點(diǎn)P引圓O的切線(xiàn),切點(diǎn)為A,M為AP的中點(diǎn),過(guò)點(diǎn)M引圓的割線(xiàn)交圓O于B,C兩點(diǎn),且∠BMP=120°,∠BPC=30°,MC=8.
(Ⅰ)求∠MPB的大;
(Ⅱ)記△MAB和△MCA的面積分別為S△MAB和S△MCA,求$\frac{{{S_{△MAB}}}}{{{S_{△MCA}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,PA是⊙O的切線(xiàn),切點(diǎn)為A,PB,PC是⊙O的割線(xiàn),它們與⊙O分別交于B,D和C,E,延長(zhǎng)CD交PA于M,∠MPC=∠MDP.
(Ⅰ)求證:AP∥BE;
(Ⅱ)求證:M是AP的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=mx3+nx在x=$\frac{1}{m}$處有極值,則mn=-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案