【題目】在平面直角坐標系中,直線l的參數(shù)方程是t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是.

1)證明:直線l與曲線C相切;

2)設直線lx軸、y軸分別交于點AB,點P是曲線C上任意一點,求的取值范圍.

【答案】1)見解析;(2

【解析】

1)利用加減消元法把直線l化成普通方程,再根據(jù)極坐標與直角坐標互化公式把曲線C化成直角坐標方程形式,最后通過圓心到直線的距離進行證明即可;

2)由(Ⅰ)知,,設點P坐標為,根據(jù)兩點間距離公式,結合輔助角公式進行求解即可.

1)直線l的普通方程為,

根據(jù),

代入得曲線C的直角坐標方程為,

,

圓心為,半徑為,圓心C到直線l的距離,

故直線l與曲線C相切.

2)由(Ⅰ)知,

設點P坐標為,

,

,

的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

平面直角坐標系xOy中,曲線C.直線l經過點Pm0),且傾斜角為O為極點,以x軸正半軸為極軸,建立極坐標系.

)寫出曲線C的極坐標方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于A,B兩點,且|PA·PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線C)的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線CA,B兩點,交該拋物線的準線于DE兩點.

1)求拋物線C的方程;

2)若F在線段上,P的中點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個極值點.

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】互聯(lián)網+”時代的今天,移動互聯(lián)快速發(fā)展,智能手機(Smartphone)技術不斷成熟,尤其在5G領域,華為更以件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價格卻不斷下降,遠低于蘋果;智能手機成為了生活中必不可少的工具,學生是對新事物和新潮流反應最快的一個群體之一,越來越多的學生在學校里使用手機,為了解手機在學生中的使用情況,對某學校高二年級名同學使用手機的情況進行調查,針對調查中獲得的每天平均使用手機進行娛樂活動的時間進行分組整理得到如下的數(shù)據(jù):

使用時間(小時)

1

2

3

4

5

6

7

所占比例

4%

10%

31%

16%

12%

2%

1)求表中的值;

2)從該學校隨機選取一名同學,能否根據(jù)題目中所給信息估計出這名學生每天平均使用手機進行娛樂活動小于小時的概率?若能,請算出這個概率;若不能,請說明理由;

3)若從使用手機小時和小時的兩組中任取兩人,調查問卷,看看他們對使用手機進行娛樂活動的看法,求這人都使用小時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,是棱上動點,下列說法正確的是( .

A.對任意動點,在平面內存在與平面平行的直線

B.對任意動點,在平面內存在與平面垂直的直線

C.當點運動到的過程中,與平面所成的角變大

D.當點運動到的過程中,點到平面的距離逐漸變小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,、分別是線段、、的中點,,在線段上運動,設.

1)證明:;

2)是否存在點,使得平面與平面所成的銳二面角的大小為?若存在,試確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201912月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID19),簡稱“新冠肺炎”.下圖是2020115日至124日累計確診人數(shù)隨時間變化的散點圖.

為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)115日至124日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型.

1)根據(jù)散點圖判斷,哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)

2根據(jù)(1)的判斷結果及附表中數(shù)據(jù),建立y關于x的回歸方程;

3)以下是125日至129日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結果回答下列問題:

時間

125

126

127

128

129

累計確診人數(shù)的真實數(shù)據(jù)

1975

2744

4515

5974

7111

(。┊125日至127日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?

(ⅱ)2020124日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?

附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.

參考數(shù)據(jù):其中,.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).其中是自然對數(shù)的底數(shù).

1)求函數(shù)在點處的切線方程;

2)若不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案