【題目】選修4—4:坐標系與參數(shù)方程

平面直角坐標系xOy中,曲線C.直線l經(jīng)過點Pm0),且傾斜角為O為極點,以x軸正半軸為極軸,建立極坐標系.

)寫出曲線C的極坐標方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于A,B兩點,且|PA·PB|=1,求實數(shù)m的值.

【答案】(Ⅰ)t為參數(shù));(Ⅱ).

【解析】

試題分析: 本題主要考查極坐標方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力. 第一問,用,化簡表達式,得到曲線的極坐標方程,由已知點和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.

試題解析:(1 ,

.

2

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年10月9日,教育部考試中心下發(fā)了《關(guān)于年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會主義核心價值觀,充分發(fā)揮高考命題的育人功能和積極導向作用.鞍山市教育部門積極回應,編輯傳統(tǒng)文化教材,在全是范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對開設(shè)傳統(tǒng)文化課的態(tài)度,教育機構(gòu)隨機抽取了位市民進行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民人中支持態(tài)度的為人.

支持

不支持

合計

男性

女性

合計

(1)完成列聯(lián)表

(2)判斷是否有的把握認為性別與支持有關(guān)?

附:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為(1,2),點M的極坐標為 ,若直線l過點P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標方程;
(2)設(shè)直線l與圓C相交于A,B兩點,求|PA||PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,且函數(shù).若函數(shù)的圖象上兩個相鄰的對稱軸距離為.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)若方程時,有兩個不同實數(shù)根,,求實數(shù)的取值范圍,并求出的值;

(Ⅲ)若函數(shù)的最大值為2,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的增函數(shù),實數(shù)使得對于任意都成立,則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率.

(1)求橢圓的方程;

(2)如圖所示,A、B、D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DPx軸于點N,直線ADBP于點M,設(shè)BP的斜率為k,MN的斜率為m.證明:2m-k為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(﹣x)=f(x),且當x<0,f(x)=3x+1,若a= ,b= ,c=2 ,則有(
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(b)<f(a)<f(c)
D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標系(與直角坐標系xoy取相同的單位長度,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2 sinθ.
(1)求圓C的直角坐標方程;
(2)設(shè)圓C與直線l交于A,B兩點,若點P坐標為(3, ),求|PA|+|PB|.

查看答案和解析>>

同步練習冊答案