【題目】某校學生會為研究該校學生的性別與語文、數(shù)學、英語成績這3個變量之間的關系,隨機抽查了100名學生,得到某次期末考試的成績數(shù)據(jù)如表1至表3,根據(jù)表中數(shù)據(jù)可知該校學生語文、數(shù)學、英語這三門學科中( )
表1 | 表2 | 表3 | |||||||||||||
語文 性別 | 不及格 | 及格 | 總計 | 數(shù)學 性別 | 不及格 | 及格 | 總計 | 英語 性別 | 不及格 | 及格 | 總計 | ||||
男 | 14 | 36 | 50 | 男 | 10 | 40 | 50 | 男 | 25 | 25 | 50 | ||||
女 | 16 | 34 | 50 | 女 | 20 | 30 | 50 | 女 | 5 | 45 | 50 | ||||
總計 | 30 | 70 | 100 | 總計 | 30 | 70 | 100 | 總計 | 30 | 70 | 100 | ||||
A.語文成績與性別有關聯(lián)性的可能性最大,數(shù)學成績與性別有關聯(lián)性的可能性最小
B.數(shù)學成績與性別有關聯(lián)性的可能性最大,語文成績與性別有關聯(lián)性的可能性最小
C.英語成績與性別有關聯(lián)性的可能性最大,語文成績與性別有關聯(lián)性的可能性最小
D.英語成績與性別有關聯(lián)性的可能性最大,數(shù)學成績與性別有關聯(lián)性的可能性最小
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有10個除顏色外完全一樣的黑球和白球,已知從袋中任意摸出2個球,至少得到1個白球的概率是.
(1)求白球的個數(shù);
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機變量X的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為,已知且.
(1)求角;
(2)如圖,D為△ABC外一點,若在平面四邊形ABCD中,,求△ACD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知為三個不同的定點.以原點為圓心的圓與線段都相切.
(Ⅰ)求圓的方程及的值;
(Ⅱ)若直線與圓相交于兩點,且,求的值;
(Ⅲ)在直線上是否存在異于的定點,使得對圓上任意一點,都有為常數(shù)?若存在,求出點的坐標及的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】科學家發(fā)現(xiàn)某種特別物質(zhì)的溫度(單位:攝氏度)隨時間(時間:分鐘)的變化規(guī)律滿足關系式:(,).
(1)若,求經(jīng)過多少分鐘,該物質(zhì)的溫度為5攝氏度;
(2)如果該物質(zhì)溫度總不低于2攝氏度,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,右頂點為,且過點,圓是以線段為直徑的圓,經(jīng)過點且傾斜角為的直線與圓相切.
(1)求橢圓及圓的方程;
(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點,且滿足?若存在,請求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,其中,為個互不相同的有限集合,滿足對任意、,均有.若(表示有限集合的元素個數(shù)),證明:存在,使得屬于中的至少個集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com