【題目】某學(xué)校共有名學(xué)生,其中男生人,為了解該校學(xué)生在學(xué)校的月消費(fèi)情況,采取分層抽樣隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)查,月消費(fèi)金額分布在之間.根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖如圖所示:
將月消費(fèi)金額不低于元的學(xué)生稱為“高消費(fèi)群”.
(1)求的值,并估計(jì)該校學(xué)生月消費(fèi)金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)現(xiàn)采用分層抽樣的方式從月消費(fèi)金額落在,內(nèi)的兩組學(xué)生中抽取人,再從這人中隨機(jī)抽取人,記被抽取的名學(xué)生中屬于“高消費(fèi)群”的學(xué)生人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望;
(3)若樣本中屬于“高消費(fèi)群”的女生有人,完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生屬于“高消費(fèi)群”與“性別”有關(guān)?
(參考公式:,其中)
【答案】(1),平均數(shù):元;(2)分布列見解析,;(3)列聯(lián)表見解析,有.
【解析】
(1)根據(jù)頻率和為,列方程解出的值,再由頻率分布直方圖求樣本平均數(shù),即可得解;
(2)由題意可知隨機(jī)變量服從超幾何分布,確定的取值,求出對(duì)應(yīng)概率,可得的分布列,再計(jì)算數(shù)學(xué)期望即可;
(3)由題可知,樣本中男生人,女生人,屬于“高消費(fèi)群”的人,由此完成列聯(lián)表,并由公式計(jì)算,查表判斷即可.
(1)由題意知,,
解得,
樣本的平均數(shù)為:
(元),
所以估計(jì)該校學(xué)生月消費(fèi)金額的平均數(shù)為元.
(2)由題意,從中抽取人,從中抽取人.
隨機(jī)變量的所有可能取值有,,,,
(),
所以,隨機(jī)變量的分布列為
隨機(jī)變量的數(shù)學(xué)期望.
(3)由題可知,樣本中男生人,女生人,屬于“高消費(fèi)群”的人,其中女生人;
得出以下列聯(lián)表:
,
所以有的把握認(rèn)為該校學(xué)生屬于“高消費(fèi)群”與“性別”有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)F是橢圓C:1(a>b>0)的一個(gè)焦點(diǎn),點(diǎn)D是橢圓上的一個(gè)動(dòng)點(diǎn),且|FD|∈[1,3].
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(﹣4,0)作直線交橢圓C于A,B兩點(diǎn),求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題方程在在存在唯一實(shí)數(shù)根;,.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,
.
(1)證明: ;
(2)若直線與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+a,a∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥1時(shí),恒有g(x)=(x+1)f(x)﹣lnx≤0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述錯(cuò)誤的是( ).
A.若事件發(fā)生的概率為,則
B.互斥事件不一定是對(duì)立事件,但是對(duì)立事件一定是互斥事件
C.某事件發(fā)生的概率是隨著試驗(yàn)次數(shù)的變化而變化的
D.5張獎(jiǎng)券中有一張有獎(jiǎng),甲先抽,乙后抽,則乙與甲中獎(jiǎng)的可能性相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程和曲線的極坐標(biāo)方程;
(2)若射線與曲線,分別交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:在區(qū)間上存在單調(diào)遞減區(qū)間;命題q:函數(shù),且有三個(gè)實(shí)根.若為真命題,則實(shí)數(shù)的取值范圍是:( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com