如圖,在四棱錐中,⊥底面,四邊形是直角梯形,⊥,∥, .
(Ⅰ)求證:平面⊥平面;
(Ⅱ)若二面角的余弦值為,求.
(Ⅰ)詳見解析;(Ⅱ)
【解析】
試題分析:(Ⅰ)利用線面垂直得到線線垂直,利用線線垂直得到線面垂直,然后得到面面垂直;(Ⅱ)通過建立空間直角坐標(biāo)系,得到相應(yīng)點(diǎn)的坐標(biāo),計(jì)算平面的法向量,通過二面角的大小計(jì)算得到的值.
試題解析:(Ⅰ)∵PA⊥平面ABCD, BCÌ平面ABCD,
∴PA⊥BC,
又AB⊥BC,PA∩AB=A,
∴BC⊥平面PAB,
∵BCÌ平面PBC,
∴平面PBC⊥平面PAB. 5分
(Ⅱ)以A為原點(diǎn),AB為x軸、AP為z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)—xyz.
則B(2,0,0),C(2,1,0),D(1,1,0).
設(shè)P(0,0,a)(a>0),
則=(0,1,0),=(2,1,-a),
=(1,0,0) 8分
設(shè)n1=(x1,y1,z1)為面BPC的一個(gè)法向量,
則n1·=n1·=0,
即
取x1=a,y1=0,z1=2,得n1=(a,0,2).
同理,n2=(0,a,1)為面DPC的一個(gè)法向量. 10分
依題意, |cosán1,n2ñ|===,
解得a2=2,或a2=-7(舍去),所以=. 12分
考點(diǎn):平面與平面垂直的判定,向量法求直線的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐中,底面是矩形,平面,,.以的中點(diǎn)為球心、為直徑的球面交于點(diǎn).
(1)求證:平面⊥平面;
(2)求直線與平面所成的角;w.w.w.k.s.5.u.c.o.m
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省成都高新區(qū)高三10月統(tǒng)一檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆吉林省白山市高三摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面為菱形,,為的中點(diǎn)。
(1)若,求證:平面;
(2)點(diǎn)在線段上,,試確定的值,使;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:大連二十三中學(xué)2011學(xué)年度高一年級(jí)期末測(cè)試試卷數(shù)學(xué) 題型:解答題
(12分)如圖,在四棱錐中,底面為直角梯形,,,平面⊥底面,為AD的中點(diǎn),是棱上的點(diǎn),,.(1)若點(diǎn)是棱的中點(diǎn),求證:
// 平面;(2)求證:平面⊥平面。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com