如圖,在四棱錐中,⊥底面,四邊形是直角梯形,⊥,∥, .
(Ⅰ)求證:平面⊥平面;
(Ⅱ)若二面角的余弦值為,求.
(Ⅰ)詳見解析;(Ⅱ)
【解析】
試題分析:(Ⅰ)利用線面垂直得到線線垂直,利用線線垂直得到線面垂直,然后得到面面垂直;(Ⅱ)通過建立空間直角坐標系,得到相應點的坐標,計算平面的法向量,通過二面角的大小計算得到的值.
試題解析:(Ⅰ)∵PA⊥平面ABCD, BCÌ平面ABCD,
∴PA⊥BC,
又AB⊥BC,PA∩AB=A,
∴BC⊥平面PAB,
∵BCÌ平面PBC,
∴平面PBC⊥平面PAB. 5分
(Ⅱ)以A為原點,AB為x軸、AP為z軸,建立如圖所示的空間直角坐標系A(chǔ)—xyz.
則B(2,0,0),C(2,1,0),D(1,1,0).
設(shè)P(0,0,a)(a>0),
則=(0,1,0),=(2,1,-a),
=(1,0,0) 8分
設(shè)n1=(x1,y1,z1)為面BPC的一個法向量,
則n1·=n1·=0,
即
取x1=a,y1=0,z1=2,得n1=(a,0,2).
同理,n2=(0,a,1)為面DPC的一個法向量. 10分
依題意, |cosán1,n2ñ|===,
解得a2=2,或a2=-7(舍去),所以=. 12分
考點:平面與平面垂直的判定,向量法求直線的值.
科目:高中數(shù)學 來源: 題型:
如圖,在四棱錐中,底面是矩形,平面,,.以的中點為球心、為直徑的球面交于點.
(1)求證:平面⊥平面;
(2)求直線與平面所成的角;w.w.w.k.s.5.u.c.o.m
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆四川省成都高新區(qū)高三10月統(tǒng)一檢測文科數(shù)學試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點.
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆吉林省白山市高三摸底考試理科數(shù)學試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面為菱形,,為的中點。
(1)若,求證:平面;
(2)點在線段上,,試確定的值,使;
查看答案和解析>>
科目:高中數(shù)學 來源:大連二十三中學2011學年度高一年級期末測試試卷數(shù)學 題型:解答題
(12分)如圖,在四棱錐中,底面為直角梯形,,,平面⊥底面,為AD的中點,是棱上的點,,.(1)若點是棱的中點,求證:
// 平面;(2)求證:平面⊥平面。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com