【題目】已知橢圓:的左焦點(diǎn)為,設(shè)是橢圓的兩個(gè)短軸端點(diǎn),是橢圓的長(zhǎng)軸左端點(diǎn).
(Ⅰ)當(dāng)時(shí),設(shè)點(diǎn),直線交橢圓于,且直線的斜率分別為,求的值;
(Ⅱ)當(dāng)時(shí),若經(jīng)過(guò)的直線與橢圓交于兩點(diǎn),O為坐標(biāo)原點(diǎn),求與的面積之差的最大值.
【答案】見解析
【解析】(Ⅰ)由條件,不妨設(shè),則直線的斜率為,…1分
所以直線的方程為,代入,得,
解得,所以,,……4分
所以. ………………5分
(Ⅱ)設(shè)與的面積分別為,
當(dāng)直線的斜率不存在時(shí),直線方程為,此時(shí)不妨設(shè),則,的面積相等,即.………………6分
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),
和橢圓方程聯(lián)立得,消掉得,………………7分
顯然,方程有實(shí)根,且.………………8分
此時(shí).
因?yàn)?/span>,上式(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),
所以的最大值為.………………12分
【命題意圖】本題考查橢圓的方程與幾何性質(zhì)、直線斜率、直線與橢圓的位置關(guān)系,以及考查邏輯思維能
力、分析與解決問(wèn)題的綜合能力、運(yùn)算求解能力、方程思想與分類討論的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過(guò)點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn).
(1)求圓A的方程;
(2)當(dāng)|MN|=2時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子公司開發(fā)一種智能手機(jī)的配件,每個(gè)配件的成本是15元,銷售價(jià)是20元,月平均銷售件,通過(guò)改進(jìn)工藝,每個(gè)配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場(chǎng)分析的結(jié)果表明,如果每個(gè)配件的銷售價(jià)提高的百分率為,那么月平均銷售量減少的百分率為,記改進(jìn)工藝后電子公司銷售該配件的月平均利潤(rùn)是(元).
(1)寫出與的函數(shù)關(guān)系式;
(2)改進(jìn)工藝后,試確定該智能手機(jī)配件的售價(jià),使電子公司銷售該配件的月平均利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng),且時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列每組函數(shù)是同一函數(shù)的是( )
A.f(x)=x0與f(x)=1
B.f(x)= ﹣1與f(x)=|x|﹣1
C.f(x)= 與f(x)=x﹣2
D.f(x)= 與f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題。
(1)已知函數(shù)f(x)=4x2﹣kx﹣8在[5,20]上具有單調(diào)性,求實(shí)數(shù)k的取值范圍.
(2)關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩個(gè)不同的實(shí)根,且一個(gè)大于4,另一個(gè)小于4,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:恒等于常數(shù),則稱具有局部等差數(shù)列.
(1)若具有局部等差數(shù)列,且,求;
(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有局部等差數(shù)列,并說(shuō)明理由;
(3)設(shè)既具有局部等差數(shù)列,又具有局部等差數(shù)列,求證:具有局部等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 “中國(guó)人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國(guó)的11本、法國(guó)的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國(guó)家!边@個(gè)論斷被各種媒體反復(fù)引用。出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無(wú)疑是令人尷尬的,而且和其他國(guó)家相比,我國(guó)國(guó)民的閱讀量如此之低,也和我國(guó)傳統(tǒng)文明古國(guó)、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備購(gòu)進(jìn)一定量的書籍豐富小區(qū)圖書站,由于年齡段不同需看不同類型的書籍,為了合理配備資源,對(duì)小區(qū)內(nèi)看書人員進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了一天中名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.問(wèn):
(Ⅰ)求40名讀書者中年齡分布在的人數(shù);
(Ⅱ)求40名讀書者年齡的眾數(shù)和中位數(shù)的估計(jì)值;(用各組區(qū)間中點(diǎn)值作代表)
(Ⅲ)若從年齡在的讀書者中任取2名,求這兩名讀書者中年齡在恰有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,將函數(shù)圖象向下平移個(gè)單位得到的圖象,則
(Ⅰ)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求在區(qū)間上的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com