9、偶函數(shù)f(x)=x2+ax+5的定義域是[m2-3,2m],則a=
0
,m=
1
分析:先由偶函數(shù)的定義得到f(x)=f(-x),求出a,再根據(jù)偶函數(shù)f(x)=x2+ax+5的定義域必然關(guān)于原點(diǎn)對(duì)稱(chēng),(m2-3)+2m=0,且2m>m2-3,求出m.
解答:解:∵偶函數(shù)f(x)=x2+ax+5的定義域是[m2-3,2m],
∴f(x)=f(-x),a=0,
又偶函數(shù)f(x)=x2+ax+5的定義域必然關(guān)于原點(diǎn)對(duì)稱(chēng),
∴(m2-3)+2m=0,且2m>m2-3,
∴m=1,
故答案為 0、1.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的應(yīng)用,偶函數(shù)滿(mǎn)足f(x)=f(-x),且f(x)定義域必然關(guān)于原點(diǎn)對(duì)稱(chēng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為非零實(shí)數(shù),偶函數(shù)f(x)=x2+a|x-m|+1(x∈R)在區(qū)間(2,3)上存在唯一零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為非零實(shí)數(shù),偶函數(shù)f(x)=x2+a|x-m|+1,x∈R.
(1)求實(shí)數(shù)m的值;
(2)試確定函數(shù)f(x)的單調(diào)區(qū)間(不需證明);
(3)若函數(shù)f(x)在區(qū)間(-3,-2)上存在零點(diǎn),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)=x2+bx+c(常數(shù)b、c∈R)的一個(gè)零點(diǎn)為1,直線l:y=kx+m(k>m∈R)與函數(shù)y=f(x)的圖象相比.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求
mk
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南一模)下列命題正確的序號(hào)為
②③④
②③④

①函數(shù)y=ln(3-x)的定義域?yàn)椋?∞,3];
②定義在[a,b]上的偶函數(shù)f(x)=x2+(a+5)x+b最小值為5;
③若命題P:對(duì)?x∈R,都有x2-x+2≥0,則命題¬P:?x∈R,有x2-x+2<0;
④若a>0,b>0,a+b=4,則
1
a
+
1
b
的最小值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案