解:(Ⅰ)∵h'(x)=2x+
,又因為x>0,所以h'(x)>0在(0,+∞)上恒成立
即函數(shù)h(x)在(0,+∞)上是單調(diào)遞增,(2分)
且h(1)=0(4分)
(Ⅱ)f'(x)=
=
(x>0)
由(Ⅰ)函數(shù)h(x)=x
2-1+lnx在(0,+∞)上是單調(diào)遞增,且h(1)=0可知:
當0<x<1時,h(x)<0,所以有f'(x)<0;
當x>1時,h(x)>0,所以有f'(x)>0.(7分)
即函數(shù)f(x)在區(qū)間(0,1)上是減函數(shù),在區(qū)間(1,+∞)上是增函數(shù).(8分)
所以函數(shù)f(x)在x=1處取得最小值f(1)=0(9分)
(Ⅲ)不存在(10分)
∵函數(shù)f(x)在區(qū)間(1,+∞)上是增函數(shù),
∴當滿足1≤m<n,函數(shù)f(x)在[m,n]也是增函數(shù).
若函數(shù)f(x)在[m,n]的值域也有[m,n],則有f(m)=m,f(n)=n,
也即函數(shù)y=f(x)與直線y=x在[1,+∞)上至少有兩個不同的交點,
也即g(x)=f(x)-x在[1,+∞)上至少有兩個不同的零點,
又g(x)=f(x)-x在區(qū)間[1,e)上是減函數(shù),且g(1)=f(1)-1=-1,
當x∈[e,+∞)為增函數(shù),且g(x)<0.
∴函數(shù)g(x)=f(x)-x在[1,+∞)上沒有零點,
所以不存在實數(shù)m,n,滿足1≤m<n,使得函數(shù)f(x)在[m,n]的值域也有[m,n].(13分)
分析:(I)先求出其導函數(shù),利用導函數(shù)值的正負來判斷出其在(0,+∞)上的單調(diào)性,把1直接代入即可求出h(1)的值;
(II)先求出函數(shù)f(x)的導函數(shù),并利用(I)的結(jié)論可得函數(shù)f(x)在區(qū)間(0,1)上是減函數(shù),在區(qū)間(1,+∞)上是增函數(shù),且在1處取最小值;
(III)由(II)的結(jié)論知,當滿足1≤m<n,函數(shù)f(x)在[m,n]也是增函數(shù),進而得f(m)=m,f(n)=n,轉(zhuǎn)化為函數(shù)y=f(x)與直線y=x在[1,+∞)上至少有兩個不同的交點,即g(x)=f(x)-x在[1,+∞)上至少有兩個不同的零點,下面只需要研究出g(x)在[1,+∞)上有沒有兩個零點即可得出結(jié)論.
點評:本題主要考查利用導數(shù)求閉區(qū)間上函數(shù)的最值以及利用導數(shù)研究函數(shù)的單調(diào)性,是對導數(shù)知識的綜合考查,也是高考?碱}型.