7.已知雙曲線${x^2}-\frac{y^2}{m}=1$與拋物線y2=8x的準(zhǔn)線交于點(diǎn)P,Q,拋物線的焦點(diǎn)為F,若△PQF是等邊三角形,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{25}{9}$D.$\frac{16}{9}$

分析 由題意,x=-2,等邊三角形的邊長(zhǎng)為$\frac{8\sqrt{3}}{3}$,將(-2,$\frac{4\sqrt{3}}{3}$)代入雙曲線${x^2}-\frac{y^2}{m}=1$,可得方程,即可求出m的值.

解答 解:由題意,x=-2,等邊三角形的邊長(zhǎng)為$\frac{8\sqrt{3}}{3}$,
將(-2,$\frac{4\sqrt{3}}{3}$)代入雙曲線x2-$\frac{y^2}{m}$=1,可得4-$\frac{16}{3m}$=1,
∴m=$\frac{16}{9}$,
雙曲線的方程為x2-$\frac{{y}^{2}}{\frac{16}{9}}$=1,a2=1,b2=$\frac{16}{9}$,c2=a2+b2=$\frac{25}{9}$
雙曲線的離心率為e=$\frac{c}{a}$=$\frac{5}{3}$
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某單位委托一家網(wǎng)絡(luò)調(diào)查公司對(duì)單位1000名員工進(jìn)行了QQ運(yùn)動(dòng)數(shù)據(jù)調(diào)查,繪制了日均行走步數(shù)(千步)的頻率分布直方圖,如圖所示(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示運(yùn)動(dòng)量在[4,6)之間(單位:千步))
(Ⅰ)求單位職員日均行走步數(shù)在[6,8)的人數(shù)
(Ⅱ)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)
(Ⅲ)記日均行走步數(shù)在[4,8)的為欠缺運(yùn)動(dòng)群體,[8,12)的為適度運(yùn)動(dòng)群體,[12,16)的為過(guò)量運(yùn)動(dòng)群體,從欠缺運(yùn)動(dòng)群體和過(guò)量運(yùn)動(dòng)群體中用分層抽樣方法抽取5名員工,并在這5名員工中隨機(jī)抽取2名與健康監(jiān)測(cè)醫(yī)生面談,求過(guò)量運(yùn)動(dòng)群體中至少有1名員工與健康監(jiān)測(cè)醫(yī)生面談的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見(jiàn)表:
i1234567891011121314151617181920
ai2928301931283028323130312929313240303230
(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中$\overline{a}$是這20名工人年齡的平均數(shù)),求輸出的S值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在△ABC中,已知AB=2,AC=3,∠BAC=60°,點(diǎn)D,E分別在邊AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=3$\overrightarrow{AE}$,點(diǎn)F位線段DE上的動(dòng)點(diǎn),則$\overrightarrow{BF}$•$\overrightarrow{CF}$的取值范圍是[-$\frac{1}{16}$,$\frac{1}{2}$].( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若集合${A}=\{x|\frac{x+5}{x-2}≤0\}$,B={x||x|<3},則集合 A∪B為(  )
A.{x|-5<x<3}B.{x|-3<x<2}C.{x|-5≤x<3}D.{x|-3<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足$c(\sqrt{3}sinB+cosB)=a+b$.
(Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面積為$5\sqrt{3}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤k\end{array}\right.$,若z=3x-y的最大值為3,則實(shí)數(shù)k的值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將函數(shù)y=(x-3)2圖象上的點(diǎn)P(t,(t-3)2)向左平移m(m>0)個(gè)單位長(zhǎng)度得到點(diǎn)Q.若Q位于函數(shù)y=x2的圖象上,則以下說(shuō)法正確的是(  )
A.當(dāng)t=2時(shí),m的最小值為3B.當(dāng)t=3時(shí),m一定為3
C.當(dāng)t=4時(shí),m的最大值為3D.?t∈R,m一定為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.“ab<0”是“方程ax2+by2=c表示雙曲線”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案