【題目】閱讀下面材料,嘗試類比探究函數(shù)y=x2﹣ 的圖象,寫出圖象特征,并根據(jù)你得到的結論,嘗試猜測作出函數(shù)對應的圖象. 閱讀材料:
我國著名數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休.
在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征.我們來看一個應用函數(shù)的特征研究對應圖象形狀的例子.
對于函數(shù)y= ,我們可以通過表達式來研究它的圖象和性質(zhì),如:
(1)在函數(shù)y= 中,由x≠0,可以推測出,對應的圖象不經(jīng)過y軸,即圖象與y軸不相交;由y≠0,可以推測出,對應的圖象不經(jīng)過x軸,即圖象與x軸不相交.
(2)在函數(shù)y= 中,當x>0時y>0;當x<0時y<0,可以推測出,對應的圖象只能在第一、三象限;
(3)在函數(shù)y= 中,若x∈(0,+∞)則y>0,且當x逐漸增大時y逐漸減小,可以推測出,對應的圖象越向右越靠近x軸;若x∈(﹣∞,0),則y<0,且當x逐漸減小時y逐漸增大,可以推測出,對應的圖象越向左越靠近x軸;
(4)由函數(shù)y= 可知f(﹣x)=﹣f(x),即y= 是奇函數(shù),可以推測出,對應的圖象關于原點對稱. 結合以上性質(zhì),逐步才想出函數(shù)y= 對應的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類討論的思想,既進行了靜態(tài)(特殊點)的研究,又進行了動態(tài)(趨勢性)的思考.讓我們享受數(shù)學研究的過程,傳播研究數(shù)學的成果.
【答案】
(1)解:在y=x2﹣ 中,x≠0,可以推測出:對應的圖象不經(jīng)過y軸,即與y軸不相交,
(2)解:令y=0,即x2﹣ =0,解得x=±1,可以推測出,對應的圖象與x相交,交點坐標為(1,0)和(﹣1,0),
(3)解:在y=x2﹣ 中,當0<x<1時, >1>x2,則y<0,當x>1時, <1<x2,則y>0,可以推測出:對應的圖象在區(qū)間(0,1)上圖象在x軸的下方,在區(qū)間(1,+∞)上圖象在x軸的上方
(4)解:在y=x2﹣ 中,若x∈(0,+∞),則
當x逐漸增大時 逐漸減小,x2﹣ ,逐漸增大,即y逐漸增大,所以原函數(shù)在(0,+∞)是增函數(shù),
可以推測出:對應的圖象越向右逐漸升高,是單調(diào)遞增的趨勢
由函數(shù)y=x2﹣ 可知f(﹣x)=f(x),即函數(shù)為偶函數(shù),可以推測出:對應的圖象關于y軸對稱
【解析】通過函數(shù)的定義域,函數(shù)與x的交點情況,y值的變化趨勢,函數(shù)的奇偶性和函數(shù)的單調(diào)性,歸納函數(shù)的性質(zhì)即可.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABCDE中,∠BAC=90°,AB=AC=2,CD=2AE=2,AE∥CD,且AE⊥底面ABC,F(xiàn)為BC的中點.
(1)求證:AF⊥BD;
(2)求二面角A﹣BE﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個摩天輪的半徑為8m,每12min旋轉一周,最低點離地面為2m,若摩天輪邊緣某點P從最低點按逆時針方向開始旋轉,則點P離地面的距離h(m)與時間t(min)之間的函數(shù)關系是( )
A.h=8cost+10
B.h=﹣8cos t+10
C.h=﹣8sin t+10
D.h=﹣8cos t+10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),如果存在非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[﹣1,1]時,f(x)=x2 , 則y=f(x)與y=log5x的圖象的交點個數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四種說法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,則∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,則A=
④若a>0,b>0,a+b=2,則a2+b2≥2;
正確的序號有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設y=f(x)是定義在R上的偶函數(shù),且f(1+x)=f(1﹣x),當0≤x≤1時,f(x)=2﹣x , 則f(3)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點.
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系x′Oy所在的平面為β,直角坐標系xOy所在的平面為α,且二面角α﹣y軸﹣β的大小等于30°.已知β內(nèi)的曲線C′的方程是3(x﹣2 )2+4y2﹣36=0,則曲線C′在α內(nèi)的射影在坐標系xOy下的曲線方程是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2. (Ⅰ) 求證:AD1⊥B1C;
(Ⅱ) 求二面角A1﹣BD﹣C1的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com