已知函數(shù)f (x) =
(1)試判斷當(dāng)的大小關(guān)系;
(2)試判斷曲線是否存在公切線,若存在,求出公切線方程,若不存在,說明理由;
(3)試比較 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)與的大小,并寫出判斷過程.

(1);
(2)方程無解,故二者沒有公切線。
(3) (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)

解析試題分析:(1)設(shè),則     1分
,時,        2分
在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,         3分
所以取得最小值為        4分
(2)假設(shè)曲線有公切線,切點分別為     5分
因為,所以分別以為切線的切線方程為       6分
              8分
所以由顯然,當(dāng)時,,當(dāng)時,,所以,        9分
所以方程無解,故二者沒有公切線。         10分
(3)由(1)得對任意的x>0都成立,
           11分
ln(1 + 1×2) + ln(1 + 2×3) + …+ln[1 + n (n + 1)]>
==2012,      13分
則ln(1 + 1×2) + ln(1 + 2×3) + …+ln(1 + 2012×2013)  >2×2012-3=4021,
所以(1 + 1×2) (1 + 2×3) ……(1 +2012×2013)           14分
考點:本題主要考查導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及不等式恒成立問題。
點評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了極值情況。涉及比較大小問題,通過構(gòu)造函數(shù),轉(zhuǎn)化成了研究函數(shù)的單調(diào)性及最值。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)
(1)當(dāng)x>0時,求證:
(2)是否存在實數(shù)a使得在區(qū)間[1.2)上恒成立?若存在,求出a的取值條件;
(3)當(dāng)時,求證:f(1)+f(2)+f(3)+…+.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在區(qū)間[0,1]上是增函數(shù),在區(qū)間上是減函數(shù),又.
(1) 求的解析式;
(2) 若在區(qū)間(m>0)上恒有x成立,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)若對任意,不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
(I)若,求函數(shù)的極小值,
(Ⅱ)若,設(shè),函數(shù).若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),;
(1)討論的單調(diào)性;
(2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).()
(1)當(dāng)時,試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)其中
(1)若=0,求的單調(diào)區(qū)間;
(2)設(shè)表示兩個數(shù)中的最大值,求證:當(dāng)0≤x≤1時,||≤

查看答案和解析>>

同步練習(xí)冊答案