分析 作函數(shù)f(x)=$\left\{\begin{array}{l}|{ln(-x)}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$的圖象,從而可化為x2-2bx+3=0在(0,3]上有兩個(gè)不同的解;而m(x)=$\frac{x}{2}$+$\frac{3}{2x}$在(0,$\sqrt{3}$)上是減函數(shù),在($\sqrt{3}$,3]上是增函數(shù);從而解得.
解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}|{ln(-x)}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$的圖象如下,
,∵H(x)=[f(x)]2-2bf(x)+3有8個(gè)不同的零點(diǎn),
∴g(x)=x2-2bx+3在(0,3]上有兩個(gè)零點(diǎn);
即x2-2bx+3=0在(0,3]上有兩個(gè)不同的解;
故b=$\frac{{x}^{2}+3}{2x}$=$\frac{x}{2}$+$\frac{3}{2x}$在(0,3]上有兩個(gè)不同的解;
而m(x)=$\frac{x}{2}$+$\frac{3}{2x}$在(0,$\sqrt{3}$)上是減函數(shù),在($\sqrt{3}$,3]上是增函數(shù);
而m($\sqrt{3}$)=$\sqrt{3}$,m(3)=2;
故$\sqrt{3}$<b≤2,
故答案為:($\sqrt{3}$,2].
點(diǎn)評 本題考查了分類討論的思想應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (-1,2) | C. | (0,2) | D. | [2.3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,-$\frac{π}{3}$ | B. | 2,-$\frac{π}{6}$ | C. | 4,-$\frac{π}{6}$ | D. | 4,$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,0) | B. | (-$\frac{1}{3}$,0) | C. | (-$\frac{1}{3}$,+∞) | D. | (-∞,-$\frac{1}{3}$)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)≥2-4ln2 | B. | f(x)≤2-4ln2 | C. | f(x)≥4-8ln2 | D. | f(x)≤4-8ln2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com