【題目】要得到函數(shù)y=sin(4x﹣ )的圖象,只需將函數(shù)y=sin4x的圖象( )
A.向左平移 單位
B.向右平移 單位
C.向左平移 單位
D.向右平移 單位
【答案】B
【解析】解:因為函數(shù)y=sin(4x﹣ )=sin[4(x﹣ )],
要得到函數(shù)y=sin(4x﹣ )的圖象,只需將函數(shù)y=sin4x的圖象向右平移 單位.
故選:B.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】已知一直線與橢圓4x2+9y2=36相交于A、B兩點,弦AB的中點坐標為M(1,1),則直線AB方程為( )
A.4x+9y﹣13=0
B.4x+9y+13=0
C.9x+4y﹣13=0
D.9x+4y+13=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,,平面,是的中點.
(1)求證:平面平面;
(2)棱上是否存在一點,使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求適合下列條件的圓錐曲線的標準方程:
(1)橢圓經過A(2, ),B( , );
(2)與雙曲線C1: 有公共漸近線,且焦距為8的雙曲線C2方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)在其定義域內存在實數(shù),使得成立,則稱函數(shù)為“可拆分函數(shù)”.
(1)試判斷函數(shù)是否為“可拆分函數(shù)”?并說明你的理由;
(2)證明:函數(shù)為“可拆分函數(shù)”;
(3)設函數(shù)為“可拆分函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知學生的總成績與數(shù)學成績之間有線性相關關系,下表給出了5名同學在一次考試中的總成績和數(shù)學成績(單位:分).
學生編號 成績 | 1 | 2 | 3 | 4 | 5 |
總成績/x | 482 | 383 | 421 | 364 | 362 |
數(shù)學成績/y | 78 | 65 | 71 | 64 | 61 |
(1)求數(shù)學成績與總成績的回歸直線方程.
(2)根據(jù)以上信息,如果一個學生的總成績?yōu)?/span>450分,試估計這個學生的數(shù)學成績;
(3)如果另一位學生的數(shù)學成績?yōu)?/span>92分,試估計其總成績是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中點,△A1MC1是等腰三角形,D為CC1的中點,E為BC上一點.
(1)若DE∥平面A1MC1 , 求 ;
(2)求直線BC和平面A1MC1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com