已知函數(shù).
(1)求;
(2)求在上的取值范圍.
(1)1,(2).
解析試題分析:(1)直接代入求解:,注意特殊角對應(yīng)的三角函數(shù)值,(2)研究三角函數(shù)值域,先將三角函數(shù)化為基本三角函數(shù),這時要用到兩角和與差正弦公式及配角公式,目的就是將所研究的函數(shù)化為形如:型,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/f/0zkmj.png" style="vertical-align:middle;" />,所以再研究函數(shù)定義域,由得,因而,所以的取值范圍是.
試題解析:解:
(1) 1分
2分
3分
4分
(2) 6分
8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/3/1cl774.png" style="vertical-align:middle;" />
所以 10分
所以 12分
所以的取值范圍是 13分
考點(diǎn):三角函數(shù)性質(zhì)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,函數(shù)的最小正周期為.
(1)求的值;
(2)設(shè)的三邊、、滿足:,且邊所對的角為,若關(guān)于的方程有兩個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量=,=,定義函數(shù)f(x)=·.
(1)求函數(shù)f(x)的表達(dá)式,并指出其最大值和最小值;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的部分圖象如圖所示。
(1)求的最小正周期及解析式;
(2)設(shè),求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;
(2)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<)的周期為π,且圖象上有一個最低點(diǎn)為M.
(1)求f(x)的解析式;
(2)求函數(shù)y=f(x)+f的最大值及對應(yīng)x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com