(1)已知,求的值;
(2)已知,求的值.
(1);(2).
解析試題分析:(1)將的分子與分母同時(shí)除以得到,從而代入的值即可得到運(yùn)算結(jié)果;(2)要求的值,需要將變形為,從而根據(jù)兩角差的余弦公式進(jìn)行展開,此時(shí)只須求解、的值,要求這兩個(gè)值,需要先根據(jù)所給角的范圍確定角的取值范圍,再由同角三角函數(shù)的基本關(guān)系式可求出、的值,問題得以解決.
試題解析:(1) 4分
(2)∵
∴ 6分
8分
10分
12分.
考點(diǎn):1.同角三角函數(shù)的基本關(guān)系式;2.兩角差的余弦公式;3.三角恒等變換;4.不等式的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像過點(diǎn),且b>0,又的最大值為.
(1)將寫成含的形式;
(2)由函數(shù)y =圖像經(jīng)過平移是否能得到一個(gè)奇函數(shù)y =的圖像?若能,請寫出平移的過程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()的最小正周期為.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖象;若在上至少含有10個(gè)零點(diǎn),求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)與.
(1)對于函數(shù),有下列結(jié)論:①是奇函數(shù);②是周期函數(shù),最小正周期為;③的圖象關(guān)于點(diǎn)對稱;④的圖象關(guān)于直線對稱.其中正確結(jié)論的序號是__________;(直接寫出所有正確結(jié)論的序號)
(2)對于函數(shù),求滿足的的取值范圍;
(3)設(shè)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ac/8/4mdnh.png" style="vertical-align:middle;" />,函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6b/2/jlo413.png" style="vertical-align:middle;" />,試判斷集合之間的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=4cos x·sin+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α、β,它們的終邊分別與單位圓相交于A、B兩點(diǎn).已知A、B的橫坐標(biāo)分別為、.求:
(1) tan(α+β)的值;
(2) α+2β的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com