20.如圖,在二面角α-l-β的棱l上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,若二面角α-l-β的大小為$\frac{π}{3}$,AB=AC=2,BD=3,則CD=( 。
A.$\sqrt{11}$B.$\sqrt{14}$C.$2\sqrt{5}$D.$\sqrt{23}$

分析 由已知可得$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AB}$+$\overrightarrow{BD}$,利用數(shù)量積的性質(zhì)即可得出.

解答 解:∵CA⊥AB,BD⊥AB,∴$\overrightarrow{CA}•\overrightarrow{AB}$=$\overrightarrow{BD}•\overrightarrow{AB}$=0,
∵<$\overrightarrow{AC}$,$\overrightarrow{BD}$>=60°,∴<$\overrightarrow{CA}$,$\overrightarrow{BD}$>=120°
∵$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AB}$+$\overrightarrow{BD}$,
∴$\overrightarrow{CD}$2=$\overrightarrow{CA}$2+$\overrightarrow{AB}$2+$\overrightarrow{BD}$2+2$\overrightarrow{CA}$•$\overrightarrow{AB}$+2$\overrightarrow{CA}$•$\overrightarrow{BD}$+2$\overrightarrow{AB}$•$\overrightarrow{BD}$=22+22+32+0+2×2×3×cos120°+0=11,
∴CD=$\sqrt{11}$.
故選A.

點(diǎn)評(píng) 熟練掌握向量的運(yùn)算和數(shù)量積運(yùn)算是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知角θ為第二象限角,則點(diǎn)M(sinθ,cosθ)位于哪個(gè)象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為$ρ=2({sinθ+cosθ+\frac{1}{ρ}})$.
(1)求曲線C的參數(shù)方程;
(2)在曲線C上任取一點(diǎn)P(x,y),求的3x+4y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求函數(shù)f(x)=$\sqrt{{x}^{2}+1}$-x在[1,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),橢圓的離心率為$\frac{\sqrt{3}}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F2的直線l與橢圓C相交于A,B兩點(diǎn),求△F1AB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.直線l與雙曲線x2-4y2=4相交于A、B兩點(diǎn),若點(diǎn)P(4,1)為線段AB的中點(diǎn),則直線l的方程是x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左頂點(diǎn)到直線x+2y-2=0的距離為$\frac{{4\sqrt{5}}}{5}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,試探究:點(diǎn)O到直線AB的距離是否為定值?若是,求出這個(gè)定值;否則,請(qǐng)說(shuō)明理由;
(Ⅲ)在(2)的條件下,試求△AOB面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.a(chǎn),b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,a+c=4,sinA(1+cosB)=(2-cosA)sinB,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某大學(xué)生從全校學(xué)生中隨機(jī)選取100名統(tǒng)計(jì)他們的鞋碼大小,得到如下數(shù)據(jù):
鞋碼 35  36 37 3839  4041 42  43 44 合計(jì)
男生 -- 3 6 8 11 12 6 7 2 55
 女生 4 6 12 9 9 2 2-- 1 45
(1)某鞋店計(jì)劃采購(gòu)某種款式的女鞋1000雙,則其中38號(hào)鞋應(yīng)有多少雙?
(2)完成頻率分布直方圖,并估計(jì)該校學(xué)生的平均鞋碼.

查看答案和解析>>

同步練習(xí)冊(cè)答案