15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),橢圓的離心率為$\frac{\sqrt{3}}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F2的直線l與橢圓C相交于A,B兩點(diǎn),求△F1AB的面積的最大值.

分析 (1)由橢圓的焦點(diǎn),離心率e,列出方程組,求出a,b,由此能求出橢圓C的方程.
(2)設(shè)直線l的方程為x=ty+1,代入2x2+3y2=6得得(2t2+3)y2+4ty-4=0,
由此利用韋達(dá)定理、弦長公式、換元法、函數(shù)單調(diào)性,結(jié)合已知條件能求出△F1PQ面積的最小值.

解答 解:(1)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),
∴2c=2,c=1,又∵e=$\frac{c}{a}=\frac{\sqrt{3}}{3}$,∴$a=\sqrt{3}$,∵a2=b2+c2,∴$b=\sqrt{2}$
橢圓C的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.
(2)設(shè)直線l的方程為x=ty+1,代入2x2+3y2=6得得(2t2+3)y2+4ty-4=0,
∴y1+y2=$\frac{-4t}{2{t}^{2}+3}$,y1y2=$\frac{-4}{2{t}^{2}+3}$,
△F1AB的面積s=$\frac{1}{2}$2c•|y1-y2|=|y1-y2|=$\frac{4\sqrt{3}•\sqrt{{t}^{2}+1}}{2{t}^{2}+3}$,
令u=$\sqrt{1+{t}^{2}}$∈[1,+∞),則s=$\frac{4\sqrt{3}u}{2{u}^{2}+1}$=$\frac{4\sqrt{3}}{2u+\frac{1}{u}}$,
∵y=2u+$\frac{1}{u}$在[1,+∞)上是增函數(shù),
∴當(dāng)μ=1,即t=0時(shí),△F1AB的面積的最小值是$\frac{4\sqrt{3}}{3}$.

點(diǎn)評 題考查橢圓方程的求法,考查三角形面積的最小值的求法,注意韋達(dá)定理、弦長公式、換元法、函數(shù)單調(diào)性的合理運(yùn)用.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)集合A={x|2m-1<x<m},集合B={x|-4≤x≤5}.
(Ⅰ)若m=-3,求A∪B;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,tanA=$\frac{1}{2}$,cosB=$\frac{3\sqrt{10}}{10}$,則tanC=( 。
A.-2B.1C.$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.?dāng)?shù)列{an}中,對任意自然數(shù)n∈N*,恒有a1+a2+…+an=2n-1,則a12+a22+a32…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=|x-1|,若方程f(x)=$\sqrt{x+a}$有4個(gè)不相等的實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\frac{5}{4}$,1)B.($\frac{3}{4}$,1)C.($\frac{4}{5}$,1)D.(-1,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在二面角α-l-β的棱l上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,若二面角α-l-β的大小為$\frac{π}{3}$,AB=AC=2,BD=3,則CD=( 。
A.$\sqrt{11}$B.$\sqrt{14}$C.$2\sqrt{5}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)命題p:?x∈R,x2-2x>a,其中a∈R,命題q:?x∈R,x2+2ax+2-a=0.如果“x2>1p”為假命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.把函數(shù)f(x)=sin(-3x+$\frac{π}{6}$)的周期擴(kuò)大為原來的2倍,再將其圖象向右平移$\frac{π}{3}$個(gè)單位長度,則所得圖象的解析式為(  )
A.y=sin($\frac{π}{6}$-6x)B.y=cos6xC.y=sin($\frac{2π}{3}$-$\frac{3x}{2}$)D.y=sin(-$\frac{π}{6}$-$\frac{3}{2}$x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若復(fù)數(shù)z滿足z2=i,則為|z|=1.

查看答案和解析>>

同步練習(xí)冊答案