(本小題滿分14分)
已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點處的切線的傾斜角為,問:在什么范圍取值時,對于任意的,函數(shù)g(x)=x3 +x2在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時,設(shè)函數(shù),若在區(qū)間上至少存在一個,
使得成立,試求實數(shù)的取值范圍.
(Ⅰ)當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是
當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.
(Ⅱ)當(dāng)內(nèi)取值時,對于任意的,函數(shù)在區(qū)間上總存在極值.
(Ⅲ)

試題分析:(I)求導(dǎo),根據(jù)導(dǎo)數(shù)大(。┯诹悖蟮煤瘮(shù)f(x)的增(減)區(qū)間,要注意含參時對參數(shù)進行討論.
(II)根據(jù)可得,從而可求出,進而得到,那么本小題就轉(zhuǎn)化為有兩個不等實根且至少有一個在區(qū)間內(nèi),然后結(jié)合二次函數(shù)的圖像及性質(zhì)求解即可.
(III)當(dāng)a=2時,令,則
.
然后對p分兩種情況利用導(dǎo)數(shù)進行求解即可.
(Ⅰ)由
當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;
當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.
(Ⅱ)由,    ∴,.   
,

∵ 函數(shù)在區(qū)間上總存在極值,
有兩個不等實根且至少有一個在區(qū)間內(nèi)
又∵函數(shù)是開口向上的二次函數(shù),且,
,
上單調(diào)遞減,所以; 
,由,解得;
綜上得: 
所以當(dāng)內(nèi)取值時,對于任意的,函數(shù)在區(qū)間上總存在極值.
(Ⅲ),則
.
①當(dāng)時,由,從而,
所以,在上不存在使得
②當(dāng)時,,
上恒成立,
上單調(diào)遞增.
 
故只要,解得
綜上所述, 的取值范圍是
點評:利用導(dǎo)數(shù)求單調(diào)區(qū)間時,要注意含參時要進行討論,并且對于與不等式結(jié)合的綜合性比較強的題目,要注意解決不等式問題時,構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性極值最值研究.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),且對于任意實數(shù),恒有
(1)求函數(shù)的解析式;
(2)函數(shù)有幾個零點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)判斷的單調(diào)性并證明;
(2)若滿足,試確定的取值范圍。
(3)若函數(shù)對任意時,恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分 )已知函數(shù)
(1)求函數(shù)的最大值;
(2)若,不等式恒成立,求實數(shù)的取值范圍;
(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點處的切線為,直線軸相交于點.若點的縱坐標(biāo)恒小于1,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(a為實常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)函數(shù)..
(Ⅰ)時,求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,設(shè)的最小值為,若恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分)
設(shè)函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),其中
(Ⅰ)當(dāng)時,求的極值點;
(Ⅱ)若為R上的單調(diào)函數(shù),求a的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案