【題目】已知函數(shù).

1)求函數(shù)上的最小值的表達(dá)式;

2)若函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍.

【答案】1;(2.

【解析】

1)求出函數(shù)的對稱軸方程,對實(shí)數(shù)、、三種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出函數(shù)在區(qū)間上的最小值的表達(dá)式;

2)對函數(shù)分情況討論:(i)方程在區(qū)間上有兩個(gè)相等的實(shí)根;(ii)①方程在區(qū)間只有一根;(②;③.可得出關(guān)于實(shí)數(shù)的等式或不等式,即可解得實(shí)數(shù)的取值范圍.

1,其對稱軸為,

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,;

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

;

當(dāng)時(shí),即當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,.

綜上所述:;

2)(i)若方程上有兩個(gè)相等的實(shí)數(shù)根,

,此時(shí)無解;

ii)若方程有兩個(gè)不相等的實(shí)數(shù)根.

①當(dāng)只有一根在內(nèi)時(shí),,即,得;

②當(dāng)時(shí),,方程化為,其根為,,滿足題意;

③當(dāng)時(shí),,方程化為,其根為,,滿足題意.

綜上所述,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其“無故障使用時(shí)間 (單位:小時(shí))”衡量,無故障使用時(shí)間越大表明產(chǎn)品質(zhì)量越好,且無故障使用時(shí)間大于3小時(shí)的產(chǎn)品為優(yōu)質(zhì)品,從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取100件,并記錄了每件產(chǎn)品的無故障使用時(shí)間,得到下面試驗(yàn)結(jié)果:

無故障使用時(shí)間 (小時(shí))

頻數(shù)

20

40

40

以試驗(yàn)結(jié)果中無故障使用時(shí)間落入各組的頻率作為一件產(chǎn)品的無故障使用時(shí)間落入相應(yīng)組的概率.

(1)從該企業(yè)任取兩件這種產(chǎn)品,求至少有一件是優(yōu)質(zhì)品的概率;

(2)若該企業(yè)生產(chǎn)的這種產(chǎn)品每件銷售利潤 (單位:元)與其無故障使用時(shí)間的關(guān)系式為

從該企業(yè)任取兩件這種產(chǎn)品,其利潤記為 (單位:元),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國第一高摩天輪南昌之星摩天輪高度為,其中心距地面,半徑為,若某人從最低點(diǎn)處登上摩天輪,摩天輪勻速旋轉(zhuǎn),那么此人與地面的距離將隨時(shí)間變化,后達(dá)到最高點(diǎn),從登上摩天輪時(shí)開始計(jì)時(shí).

1)求出人與地面距離與時(shí)間的函數(shù)解析式;

2)從登上摩天輪到旋轉(zhuǎn)一周過程中,有多長時(shí)間人與地面距離大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長軸長為4.

)求橢圓的方程;

)若是橢圓的左頂點(diǎn),經(jīng)過左焦點(diǎn)的直線與橢圓交于, 兩點(diǎn),求的面積之差的絕對值的最大值.為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯(cuò)誤的個(gè)數(shù)是(

①從某社區(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會(huì)購買力的某一項(xiàng)指標(biāo),應(yīng)采用的最佳抽樣方法是分層抽樣

②線性回歸直線一定過樣本中心點(diǎn)

③對于一組數(shù)據(jù),如果將它們改變?yōu)?/span>,則平均數(shù)與方差均發(fā)生變化

④若一組數(shù)據(jù)1、、2、3的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2

⑤用系統(tǒng)抽樣方法從編號為12,3,…,700的學(xué)生中抽樣50人,若第2段中編號為20的學(xué)生被抽中,按照等間隔抽取的方法,則第5段中被抽中的學(xué)生編號為76

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平行六面體中,以頂點(diǎn)為端點(diǎn)的三條棱長都為1,且兩兩夾角為.

(1)求的長;

(2)求異面直線夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點(diǎn).

(1)證明:EF平面PAB;

(2)若二面角P-AD-B為60°

證明:平面PBC平面ABCD;

求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)若恒成立,求的值.

查看答案和解析>>

同步練習(xí)冊答案