【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關, 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計算得: , , , ,
,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關于x的回歸方程=x+(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關于x的回歸方程為=0.06e0.2303x,且相關指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計為
=;相關指數(shù)R2=.
【答案】(Ⅰ) =6.6x138.6.(Ⅱ)(i)答案見解析;(2)190.
【解析】試題分析:
(Ⅰ)根據(jù)所給公式及數(shù)據(jù)求得,從而可得線性回歸方程.(Ⅱ) ( i )根據(jù)所給數(shù)據(jù)求出相關指數(shù)為R2,通過比較可得回歸方程為=0.06e0.2303x的擬合效果好.( ii )當x=35時,求出=0.06e0.2303x的值即為預測值.
試題解析:
(Ⅰ)由題意得,
∴336.626=138.6,
∴y關于x的線性回歸方程為=6.6x138.6.
(Ⅱ) ( i )由所給數(shù)據(jù)求得的線性回歸方程為=6.6x138.6,相關指數(shù)為
R2=
因為0.9398<0.9522,
所以回歸方程=0.06e0.2303x比線性回歸方程=6.6x138.6擬合效果更好.
( ii )由( i )得當溫度x=35C時, =0.06e0.230335=0.06e8.0605.
又∵e8.0605≈3167,
∴≈0.063167≈190(個).
即當溫度x=35C時,該種藥用昆蟲的產(chǎn)卵數(shù)估計為190個.
科目:高中數(shù)學 來源: 題型:
【題目】設直線y=t與曲線C:y=x(x﹣3)2的三個交點分別為A(a,t),B(b,t),C(c,t),且a<b<c.現(xiàn)給出如下結論:
①abc的取值范圍是(0,4);
②a2+b2+c2為定值;③a+b+c=6
其中正確結論的為_______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)滿足,其中且.
(1)對于函數(shù),當時, ,求實數(shù)的集合;
(2)時, 的值恒為負數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若不等式恒成立,則實數(shù)的取值范圍;
(2)在(1)中, 取最小值時,設函數(shù).若函數(shù)在區(qū)間上恰有兩個零點,求實數(shù)的取值范圍;
(3)證明不等式: (且).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量, 獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格.人機大戰(zhàn)也引發(fā)全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查.根據(jù)調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認為“圍棋迷”與性別有關?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結果是相互獨立的,求的分布列,期望和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com