【題目】數(shù)列的前
項(xiàng)和為
,且
是
和
的等差中項(xiàng),等差數(shù)列
滿足
,
.
(1)求數(shù)列、
的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和為
,證明:
.
【答案】(1),
;(2)證明過程詳見解析.
【解析】
試題分析:本題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證能力.第一問,先利用
是
和
的等差中項(xiàng),得到
,由
求
,注意
的情況,不要漏掉,會(huì)得到
為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式,求和公式直接寫出
和
,再利用已知求出
,寫出等差數(shù)列的通項(xiàng)公式;第二問,先化簡
表達(dá)式,利用裂項(xiàng)相消法求和求
,利用放縮法比較
與
的大小,作差法判斷數(shù)列的單調(diào)性,因?yàn)閿?shù)列
為遞增數(shù)列,所以最小值為
,即
,所以
.
試題解析:(1)∵是
和
的等差中項(xiàng),∴
當(dāng)時(shí),
,∴
當(dāng)時(shí),
,
∴ ,即
3分
∴數(shù)列是以
為首項(xiàng),
為公比的等比數(shù)列,
∴,
5分
設(shè)的公差為
,
,
,∴
∴ 6分
(2) 7分
∴ 9分
∵,∴
10分
∴數(shù)列是一個(gè)遞增數(shù)列 ∴
.
綜上所述, . 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不同直線m,n和不同平面α,β,給出下列命題:
① , ②
, ③
m,n異面,④
其中假命題有:( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心坐標(biāo)
,直線
:
被圓
截得弦長為
。
(Ⅰ)求圓的方程;
(Ⅱ)從圓外一點(diǎn)
向圓引切線,求切線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)同時(shí)滿足:(。⿲(duì)于定義域內(nèi)的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)對(duì)于定義域內(nèi)的任意x1 , x2 , 當(dāng)x1≠x2時(shí),恒有 , 則稱函數(shù)f(x)為“二維函數(shù)”.現(xiàn)給出下列四個(gè)函數(shù):
①f(x)=
②f(x)=﹣x3+x
③
④
其中能被稱為“二維函數(shù)”的有 (寫出所有滿足條件的函數(shù)的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: ,
,…,
,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績?cè)?/span>與
兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
①“若, 則
互為相反數(shù)”的逆命題;
②“若兩個(gè)三角形全等,則兩個(gè)三角形的面積相等”的否命題;
③“若,則
有實(shí)根”的逆否命題;
④“若不是等邊三角形,則
的三個(gè)內(nèi)角相等”逆命題;
其中真命題為( ).
A. ①② B. ②③ C. ①③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左焦點(diǎn)
,若橢圓上存在一點(diǎn)
,滿足以橢圓短軸為直徑的圓與線段
相切于線段
的中點(diǎn)
.
(1)求橢圓的方程;
(2)過坐標(biāo)原點(diǎn)的直線交橢圓
:
于
、
兩點(diǎn),其中點(diǎn)
在第一象限,過
作
軸的垂線,垂足為
,連結(jié)
并延長交橢圓
于
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是棱BC的中點(diǎn).
求證:(1)AD⊥C1D;
(2)A1B∥平面ADC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=的定義域?yàn)锳,集合B={x|(x﹣m﹣3)(x﹣m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實(shí)數(shù)m的值;
(3)若CRB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com