【題目】已知函數(shù), .
(I)求的單調(diào)區(qū)間;
(II)若對任意的,都有,求實數(shù)的取值范圍.
【答案】(1)詳見解析;(2) .
【解析】試題分析:對函數(shù)求導,針對參數(shù)進行討論,研究函數(shù)得單調(diào)性;第二步為恒成立問題,當時,由于不滿足題意要求,當 時,求出函數(shù) 的最大值,要使在上恒成立,只需 ,從而求出 的范圍.
試題解析:(I), 當時, 恒成立,則在上單調(diào)遞增;當時,令,則.則在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
(II)方法1:
當時,因為,
所以不會有, .
②當時,由(I)知, 在上的最大值為.
所以, 等價于.即.
設,由(I)知在上單調(diào)遞增.
又,所以的解為.
故, 時,實數(shù)的取值范圍是.
方法2: , 等價于.令,則.
令,則.
因為當, 恒成立,
所以在上單調(diào)遞減.
又,可得和在上的情況如下:
+ | 0 | - | |
單調(diào)遞增 | 單調(diào)遞減 |
所以在上的最大值為.
因此, 等價于.
故, 時,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)市場分析,南雄市精細化工園某公司生產(chǎn)一種化工產(chǎn)品,當月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本y(萬元)可以看成月產(chǎn)量x(噸)的二次函數(shù);當月產(chǎn)量為10噸時,月總成本為20萬元;當月產(chǎn)量為15噸時,月總成本最低為17.5萬元,為二次函數(shù)的頂點.寫出月總成本y(萬元)關于月產(chǎn)量x(噸)的函數(shù)關系.已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一份測試題包括6道選擇題,每題只有一個選項是正確的.如果一個學生對每一道題都隨機猜一個答案,用隨機模擬方法估計該學生至少答對3道題的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017屆廣西陸川縣中學高三文上學期二!恳阎瘮(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若在上恒成立,求實數(shù)的取值范圍;
(III)在(II)的條件下,對任意的,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),().
(1)若函數(shù)與的圖象在上有兩個不同的交點,求實數(shù)的取值范圍;
(2)若在上不等式恒成立,求實數(shù)的取值范圍;
(3)證明:對于時,任意,不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017屆安徽百校論壇高三文上學期聯(lián)考二】已知函數(shù).
(1)若對恒成立,求實數(shù)的取值范圍;
(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分,第(1)問 6 分,第(2)問 6 分)
某品牌新款夏裝即將上市,為了對夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 | A店 | B店 | C店 | |||
售價(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷售量(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家連鎖店分別的平均售價和平均銷量為散點,求出售價與銷量的回歸直線方程;
(2)在大量投入市場后,銷售量與單價仍然服從(1)中的關系,且該夏裝成本價為40元/件,為使該款夏裝在銷售上獲得最大利潤,該款夏裝的單價應定為多少元(保留整數(shù))?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
在平面直角坐標系中,有三個點的坐標分別是.
(1)證明:A,B,C三點不共線;
(2)求過A,B的中點且與直線平行的直線方程;
(3)設過C且與AB所在的直線垂直的直線為,求與兩坐標軸圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù),當.
(Ⅰ)求出函數(shù)在上的解析式;
(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;
(Ⅲ)若關于的方程有三個不同的解,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com