已知M(a,2)是拋物線y2=2x上的一點(diǎn),直線MP、MQ分別與拋物線交于P、Q兩點(diǎn),且直線MP、MQ的傾斜角之和為π,則直線PQ的斜率為( 。
A、
1
4
B、
1
2
C、-
1
2
D、-
1
4
分析:將M代入拋物線求出a,利用直線MP,MQ的傾斜角的和為π則其斜率互為相反數(shù),設(shè)出MP的方程,將方程與拋物線的方程聯(lián)立,利用韋達(dá)定理求出P的縱坐標(biāo)與k的關(guān)系;同理得到Q的縱坐標(biāo)與k的關(guān)系;利用兩點(diǎn)連線的斜率公式求出PQ的斜率.
解答:解:將(a,2)代入拋物線方程得a=2即M(2,2)
設(shè)直線MP的斜率為k;則直線MQ的斜率為-k,設(shè)p(x1,y1),Q(x2,y2
直線MP的方程為y-2=k(x-2)
y-2=k(x-2)
y2=2x
消x得ky2-2y+4-4k=0
由韋達(dá)定理得y1+2=
2
k

同理y2+2=-
2
k

∴y1+y2=-4
PQ的斜率為
y2-y1
x2-x1
=
y2-y1
y22
2
-
y12
2
=
2
y1+y2
=-
1
2

故選C
點(diǎn)評(píng):本題考查解決直線與圓錐曲線的位置關(guān)系常用的方法是將它們的方程聯(lián)立,通過韋達(dá)定理得到交點(diǎn)的坐標(biāo)的關(guān)系、考查兩點(diǎn)連線的斜率公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點(diǎn)D(0,-2),過點(diǎn)D作拋線C1:x2=2py(p>0)的切線l,切點(diǎn)A在第一象限,如圖.
(1)求切點(diǎn)A的縱坐標(biāo);
(2)若離心率為
3
2
的橢圓C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好經(jīng)過切點(diǎn)A,設(shè)切線l交橢圓的另一點(diǎn)為B,記切線l,OA,OB的斜率分別為k,k2,k3,若2k1+k2=3k,求拋物線C1和橢圓C2的方程.
(3)設(shè)P、Q分別是(2)中的橢圓C2的右頂點(diǎn)和上頂點(diǎn),M是橢圓C2在第一象限的任意一點(diǎn),求四邊形OPMQ面積的最大值以及此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省實(shí)驗(yàn)中學(xué)2011屆高三5月針對(duì)性練習(xí)數(shù)學(xué)理綜試題 題型:044

已知點(diǎn)D(0,-2),過點(diǎn)D作拋線C1:x2=2py(p>0)的切線l,切點(diǎn)A在第一象限,如圖.

(1)求切點(diǎn)A的縱坐標(biāo);

(2)若離心率為的橢圓恰好經(jīng)過切點(diǎn)A,設(shè)切線l交橢圓的另一點(diǎn)為B,記切線l,OA,OB的斜率分別為k,k1,k2,若2k1+k2=3k,求拋物線C1和橢圓C2的方程.

(3)設(shè)P、Q分別是(2)中的橢圓C2的右頂點(diǎn)和上頂點(diǎn),M是橢圓C2在第一象限的任意一點(diǎn),求四邊形OPMQ面積的最大值以及此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案