已知數(shù)列{an}的通項(xiàng)公式為an=(2n-1)•2n,我們用錯(cuò)位相減法求其前n項(xiàng)和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項(xiàng)減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數(shù)列{bn}的通項(xiàng)公式為bn=n2•2n,
則其前n項(xiàng)和Tn=   
【答案】分析:先如題設(shè)中錯(cuò)位相減法,正好求得Tn=-Sn+n2•2n+1進(jìn)而得到答案.
解答:解:Tn=1×2+4×22+9×23+…n2•2n
∴2Tn=1×22+4×23+9×24+…n2•2n+1
∴-Tn=1×2+3×22+5×23+…(2n-1)2n-n2•2n+1
即Tn=-Sn+n2•2n+1=(n2-2n+3)•2n+1-6
故答案為:(n2-2n+3)•2n+1-6
點(diǎn)評:本題主要考查數(shù)列的求和問題.錯(cuò)位相減法是解決數(shù)列求和問題常用的方法,應(yīng)熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)為an=2n-1,Sn為數(shù)列{an}的前n項(xiàng)和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項(xiàng)和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項(xiàng)公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1
n+1
+
n
求它的前n項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊答案