精英家教網 > 高中數學 > 題目詳情

【題目】設集合M={x||x|<1},N={y|y=2x , x∈M},則集合R(M∩N)等于(
A.(﹣∞, ]
B.( ,1)
C.(﹣∞, ]∪[1,+∞)
D.[1,+∞)

【答案】C
【解析】解:∵集合M={x||x|<1},N={y|y=2x , x∈M}, ∴M=(﹣1,1),N=(﹣ ,2),
∴M∩N=(﹣ ,1)
R(M∩N)=(﹣∞, ]∪[1,+∞)
故選:C
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構成,曲線AB和曲線DE分別是頂點在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點B、D處的切線相同,若橋的最高點C到水平面的距離H=6米,圓弧的弓高h=1米,圓弧所對的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(I)求 的單調區(qū)間;
(II)若對任意的 ,都有 ,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 經過點 ,其離心率 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設動直線 與橢圓 相切,切點為 ,且 與直線 相交于點
試問:在 軸上是否存在一定點,使得以 為直徑的圓恒過該定點?若存在,
求出該點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐 的底面 為正方形, ⊥底面 , 分別是 的中點, .

(Ⅰ)求證 ∥平面
(Ⅱ)求直線 與平面 所成的角;
(Ⅲ)求四棱錐 的外接球的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 、 ,短軸兩個端點為 、 ,且四邊形 是邊長為2的正方形.

(1)求橢圓的方程;
(2)若 、 分別是橢圓長軸的左、右端點,動點 滿足 ,連接 ,交橢圓于點 .證明: 為定值.
(3)在(2)的條件下,試問 軸上是否存異于點 的定點 ,使得以 為直徑的圓恒過直線 、 的交點,若存在,求出點 的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且經過點 是橢圓的左、右焦點.
(1)求橢圓 的方程;
(2)點 在橢圓上運動,求 的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣alnx+x(a∈R)
(Ⅰ)當a=1時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(Ⅱ)討論函數y=f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N* , sin

查看答案和解析>>

同步練習冊答案