給定集合A,若對(duì)于任意a,b∈A,有a+b∈A,且a-b∈A,則稱集合A為閉集合,給出如下四個(gè)結(jié)論:
①集合A={-4,-2,0,2,4}為閉集合;     
②集合A={-3,-1,0,1,3}為閉集合;
③集合A={n|n=3k,k∈Z}為閉集合;       
④若集合A1,A2為閉集合,則A1∪A2為閉集合.
其中正確結(jié)論的序號(hào)是( 。
A、①B、②C、③D、④
分析:根據(jù)新定義和集合知識(shí)綜合的問題,分別判斷a+b∈A,且a-b∈A是否滿足即可得到結(jié)論.
解答:解:①當(dāng)a=-4,b=-2時(shí),a+b=-4+(-2)=-6∉A,故不是閉集合,∴①錯(cuò)誤;
②當(dāng)a=-3,b=-1時(shí),a+b=-3+(-1)=-4∉A,故不是閉集合,∴②錯(cuò)誤;
③由于任意兩個(gè)3的倍數(shù),它們的和、差仍是3的倍數(shù),故是閉集合,∴③正確;
④假設(shè)A1={n|n=3k,k∈Z},A2={n|n=5k,k∈Z},3∈A1,5∈A2,但是,3+5∉A1∪A2,則A1∪A2不是閉集合,∴④錯(cuò)誤.
正確結(jié)論的序號(hào)是③.
故選:C.
點(diǎn)評(píng):本題主要考查的是集合知識(shí)和新定義的問題.在解答過程當(dāng)中應(yīng)充分體會(huì)新定義問題概念的確定性,與集合子集個(gè)數(shù)、子集構(gòu)成的規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定集合A,若對(duì)于任意a,b∈A,有a+b∈A,且a-b∈A,則稱集合A為閉集合,給出如下三個(gè)結(jié)論:
①集合A={-4,-2,0,2,4}為閉集合;
②集合A={n|n=3k,k∈Z}為閉集合;
③若集合A1,A2為閉集合,則A1∪A2為閉集合;
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)給定集合A,若對(duì)于任意a,b∈A,有a+b∈A,且a-b∈A,則稱集合A為閉集合,給出如下四個(gè)結(jié)論:
①集合A={-4,-2,0,2,4}為閉集合;  
②集合A={n|n=3k,k∈Z}為閉集合;
③若集合A1,A2為閉集合,則A1∪A2為閉集合;
④若集合A1,A2為閉集合,且A1⊆R,A2⊆R,則存在c∈R,使得c∉(A1∪A2).
其中正確結(jié)論的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)給定集合A,若對(duì)于任意a,b∈A,有a+b∈A,則稱集合A為閉集合,給出如下五個(gè)結(jié)論:
①集合A={-4,-2,0,2,4}為閉集合;
②正整數(shù)集是閉集合;
③集合A={n|n=3k,k∈Z}是閉集合;
④若集合A1,A2為閉集合,則A1∪A2為閉集合;
⑤若集合A1,A2為閉集合,且A1⊆R,A2⊆R,則存在c∈R,使得c∉(A1∪A2).
其中正確的結(jié)論的序號(hào)是
②③⑤
②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定集合A,若對(duì)于任意a,b∈A,都有a+b∈A且a-b∈A,則稱集合A為完美集合,給出下列四個(gè)論斷:①集合A={-4,-2,0,2,4}是完美集合;②完美集合不能為單元素集;③集合A={n|n=3k,k∈Z}為完美集合;④若集合A,B為完美集合,則集合A∪B為完美集合.其中正確論斷的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案