(2012•江西)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為(  )
分析:由題意可得,|AF1|=a-c,|F1F2|=2c,|F1B|=a+c,由|AF1|,|F1F2|,|F1B|成等比數(shù)列可得到e2=
c2
a2
=
1
5
,從而得到答案.
解答:解:設(shè)該橢圓的半焦距為c,由題意可得,|AF1|=a-c,|F1F2|=2c,|F1B|=a+c,
∵|AF1|,|F1F2|,|F1B|成等比數(shù)列,
∴(2c)2=(a-c)(a+c),
c2
a2
=
1
5
,即e2=
1
5
,
∴e=
5
5
,即此橢圓的離心率為
5
5

故選B.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),考查等比數(shù)列的性質(zhì),用a,c分別表示出|AF1|,|F1F2|,|F1B|是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為
5
5
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=
ex-ax
,g(x)=alnx+a.
(1)a=1時(shí),求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若x>1時(shí),函數(shù)y=f(x)的圖象總在函數(shù)y=g(x)的圖象的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)設(shè)e1、e2為焦點(diǎn)在x軸上且具有公共焦點(diǎn)F1、F2的標(biāo)準(zhǔn)橢圓和標(biāo)準(zhǔn)雙曲線的離心率,O為坐標(biāo)原點(diǎn),P是兩曲線的一個(gè)公共點(diǎn),且滿足2|
op
|
=|
F1F2
|
,則
e1e2
e
2
1
+
e
2
2
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)已知橢圓的兩個(gè)焦點(diǎn)F1(-
3
,0)
,F2(
3
,0)
,過F1且與坐標(biāo)軸不平行的直線l1與橢圓相交于M,N兩點(diǎn),△MNF2的周長等于8.若過點(diǎn)(1,0)的直線l與橢圓交于不同兩點(diǎn)P、Q,x軸上存在定點(diǎn)E(m,0),使
PE
QE
恒為定值,則E的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案