【題目】為了解學(xué)生身高情況,某校以的比例對(duì)全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為,測(cè)得男生身高情況的頻率分布直方圖(如圖所示):

(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

【答案】(1)174.64cm(2).

【解析】試題分析:

(1)由題意結(jié)合中位數(shù)的求法可得男生身高的中位數(shù)是174.64cm;

(2)列出所有可能的事件,結(jié)合古典概型公式可得至少有1人身高在之間的概率是.

試題解析:

(1)由題意得,所抽取的男生人數(shù)為:

1000×8%×=40人

依據(jù)樣本頻率分布直方圖:0.01×5+0.025×5+x=0.5 得x=0.325 ,而身高170~175之間的頻率為0.35,所以中位數(shù)為170+5×≈174.64cm

(2)樣本中身高在180~185 cm之間的男生有4人,設(shè)其編號(hào)為①,②,③,④,樣本中身高在185~190 cm之間的男生有2人,設(shè)其編號(hào)為⑤,⑥,從上述6人中任取2人的共有:

(①,②)(①,③)(①,④)(①,⑤)(①,⑥)

(②,③)(②,④)(②,⑤)(②,⑥)

(③,④)(③,⑤)(③,⑥)

(④,⑤)(④,⑥)

(⑤,⑥)

故從樣本中身高在180~190 cm之間的男生中任選2人的所有可能結(jié)果數(shù)為15,至少有1人身高在185~190 cm之間的可能結(jié)果數(shù)為9,因此,所求概率P2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù)).

(1)若函數(shù)的圖象在處的切線方程為,求, 的值;

(2)若時(shí),函數(shù)內(nèi)是增函數(shù),求的取值范圍;

(3)當(dāng)時(shí),設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過(guò)線段的中點(diǎn)軸的垂線分別交、于點(diǎn)、,問(wèn)是否存在點(diǎn),使處的切線與處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)設(shè)曲線和曲線的交點(diǎn)為、,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求和函數(shù)的極值;

(2)若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;

(3)直線為曲線的切線,且經(jīng)過(guò)原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明

理由;

(3)當(dāng)時(shí).證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)食品商店為了調(diào)查氣溫對(duì)熱飲銷(xiāo)售的影響,經(jīng)過(guò)調(diào)查得到關(guān)于賣(mài)出的熱飲杯數(shù)與當(dāng)天氣溫的數(shù)據(jù)如下表,繪出散點(diǎn)圖如下.通過(guò)計(jì)算,可以得到對(duì)應(yīng)的回歸方程=-2.352x+147.767,根據(jù)以上信息,判斷下列結(jié)論中正確的是( )

攝氏溫度

-5

0

4

7

12

15

19

23

27

31

36

熱飲杯數(shù)

156

150

132

128

130

116

104

89

93

76

54

A.氣溫與熱飲的銷(xiāo)售杯數(shù)之間成正相關(guān)

B.當(dāng)天氣溫為2℃時(shí),這天大約可以賣(mài)出143杯熱飲

C.當(dāng)天氣溫為10℃時(shí),這天恰賣(mài)出124杯熱飲

D.由于x=0時(shí),的值與調(diào)查數(shù)據(jù)不符,故氣溫與賣(mài)出熱飲杯數(shù)不存在線性相關(guān)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的甲、乙兩個(gè)車(chē)間的名工人進(jìn)行了勞動(dòng)技能大比拼,規(guī)定:技能成績(jī)大于或等于分為優(yōu)秀, 分以下為非優(yōu)秀,統(tǒng)計(jì)成成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)車(chē)間工人中隨機(jī)抽取人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計(jì)

甲車(chē)間

乙車(chē)間

合計(jì)

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認(rèn)為“成績(jī)與車(chē)間有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].

(1)求m的值;

(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:人們對(duì)聲音有不同的感覺(jué),這與它的強(qiáng)度有關(guān)系.聲音的強(qiáng)度用瓦/2 ()表示,但在實(shí)際測(cè)量時(shí),常用聲音的強(qiáng)度水平表示,它們滿足以下公式: (單位為分貝, ,其中,這是人們平均能聽(tīng)到的最小強(qiáng)度,是聽(tīng)覺(jué)的開(kāi)端).回答以下問(wèn)題:

(1)樹(shù)葉沙沙聲的強(qiáng)度是,耳語(yǔ)的強(qiáng)度是,恬靜的無(wú)線電廣播的強(qiáng)度是,試分別求出它們的強(qiáng)度水平;

(2)某一新建的安靜小區(qū)規(guī)定:小區(qū)內(nèi)公共場(chǎng)所的聲音的強(qiáng)度水平必須保持在50分貝以下,試求聲音強(qiáng)度的范圍為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案