直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.

(1)證明:CB1⊥BA1;

(2)已知AB=2,BC=,求三棱錐C1-ABA1的體積.

 

【答案】

(1)證明詳見(jiàn)解析;(2)

【解析】

試題分析:(1)連結(jié)AB1,則AC⊥BA1.,又∵AB=AA1,∴四邊形ABB1A1是正方形,∴BA1⊥AB1,由直線與平面垂直的判定定理可的BA1⊥平面CAB1,故CB1⊥BA1.(2)首先求出A1C1的值,由(1)知,A1C1⊥平面ABA1,即A1C1是三棱錐C1-ABA1的高,然后在求出△ABA1的面積,最后根據(jù)棱錐的體積公式求解即可.

試題解析:解:(1)證明:如圖,連結(jié)AB1

∵ABC-A1B1C1是直三棱柱,∠CAB=,

∴AC⊥平面ABB1A1,故AC⊥BA1.  3分

又∵AB=AA1,∴四邊形ABB1A1是正方形,

∴BA1⊥AB1,又CA∩AB1=A.

∴BA1⊥平面CAB1,故CB1⊥BA1.                 6分

(2)∵AB=AA1=2,BC=,∴AC=A1C1=1,     8分

由(1)知,A1C1⊥平面ABA1,                    10分

∴VC1-ABA1S△ABA1·A1C1×2×1=.        12分

考點(diǎn):1.直棱柱的性質(zhì)和直線與平面垂直的判定;2.棱錐的體積.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-ABC中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成的角的大;
(2)若A1C與平面ABCS所成角為45°,求三棱錐A1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,側(cè)棱長(zhǎng)為2,底面△ABC中,∠B=90°,AB=1,BC=
3
,D是側(cè)棱CC1上一點(diǎn),且BD與底面所成角為30°.
(1)求點(diǎn)D到AB所在直線的距離.
(2)求二面角A1-BD-B1的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,BC=CC1=AC=a
(1)求證:BC1⊥平面AB1C
(2)求二面角B-AB1-C的大小
(3)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,CC1>AC,∠ACB=90°,異面直線AC1與BA1所成角的大小為arccos
30
10

(1)求三棱柱ABC-A1B1C1的體積;
(2)設(shè)D為線段A1B1的中點(diǎn),求二面角A-C1D-A1的大。ńY(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AB=AA1=2
2
,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是BB1的中點(diǎn).
(1)求證:A1B⊥平面CDE;
(2)求二面角D-CE-A1的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案