2.已知$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值,并寫出取最大值時自變量x的集合;
(3)求函數(shù)f(x)在$x∈[{0,\frac{π}{2}}]$上的單調(diào)區(qū)間.

分析 (1)根據(jù)周期公式可得函數(shù)f(x)的最小正周期;
(2)根據(jù)三角函數(shù)性質(zhì)可得最大值以及取最大值時自變量x的集合.
(3)求出函數(shù)f(x)的單調(diào)區(qū)間,即可求$x∈[{0,\frac{π}{2}}]$上的單調(diào)區(qū)間.

解答 解:函數(shù)$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$
(1)函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$;
(2)∵sin(2x+$\frac{π}{6}$)的最大值為1,
∴f(x)的最大值為$\frac{1}{2}$,此時2x+$\frac{π}{6}$=$\frac{π}{2}+2kπ$,
∴x=$\frac{π}{6}+kπ$.
故得$f{(x)_{max}}=\frac{1}{2}$,自變量x的集合為$\left\{{x\left|{x=\frac{π}{6}+kπ,k∈Z}\right.}\right\}$
(3)令$-\frac{π}{2}+2kπ$≤2x+$\frac{π}{6}$≤$\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{3}+kπ$≤x≤$\frac{π}{6}+kπ$.
∴函數(shù)f(x)的單調(diào)增區(qū)間為[$-\frac{π}{3}+kπ$,$\frac{π}{6}+kπ$],k∈Z.
∵$x∈[{0,\frac{π}{2}}]$,
∴$[{0,\frac{π}{6}}]$是單調(diào)遞增區(qū)間,
(3)令$\frac{π}{2}+2kπ$≤2x+$\frac{π}{6}$≤$\frac{3π}{2}+2kπ$,k∈Z.
得:$\frac{π}{6}+kπ$≤x≤$\frac{2π}{3}+kπ$.
∴函數(shù)f(x)的單調(diào)減區(qū)間為[$\frac{π}{6}+kπ$,$\frac{2π}{3}$+kπ],k∈Z.
∵$x∈[{0,\frac{π}{2}}]$上的,
∴$({\frac{π}{6},\frac{π}{2}}]$是單調(diào)遞減區(qū)間.

點評 本題主要考查三角函數(shù)的圖象和性質(zhì)的運用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.函數(shù)f(x)=sin(ωx+φ)(ω>0),|φ|<$\frac{π}{2}$)在某一個周期內(nèi)的單調(diào)遞減區(qū)間是[$\frac{5π}{12}$,$\frac{11π}{12}$].
(1)求f(x)的解析式;
(2)將y=f(x)的圖象先向右平移$\frac{π}{6}$個單位,再將圖象上所有點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標不變),所得到的圖象對用的函數(shù)記為g(x),若對于任意一的x∈[$\frac{π}{8}$,$\frac{3π}{8}$],不等式-1<g(x)-m<1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若集合A={x|x>1},B={x|x(x-3)<0},則A∩B=( 。
A.[3,+∞)B.(0,3)C.(1,3)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≤0\\ x+y≤2\\ x≥0\end{array}\right.$,若 z=ax+y的最大值為4,則a=( 。
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.對某工廠生產(chǎn)的產(chǎn)品進行質(zhì)量監(jiān)測,現(xiàn)隨機抽取該工廠生產(chǎn)的某批次產(chǎn)品中的5件進行檢測,測得其中x,y兩種指標的含量的數(shù)據(jù)如下:
產(chǎn)品編號12345
指標 x6978667580
指標 y7580777081
(Ⅰ)當該產(chǎn)品中指標x,y滿足x≥75且y≥80時,該產(chǎn)品為優(yōu)等品,求該產(chǎn)品為優(yōu)等品的概率;
(Ⅱ)若從該產(chǎn)品中隨機抽取2件,求出取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.平面直角坐標系xOy中,曲線C1的方程是$\frac{x^2}{4}+\frac{y^2}{12}=1$,以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2cosθ-4sinθ.
(Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標方程;
(Ⅱ)設(shè)C2與x軸的一個交點是P(m,0)(m>0),經(jīng)過P斜率為1的直線l交C1于A,B兩點,根據(jù)(Ⅰ)中你得到的參數(shù)方程,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.我國齊梁時代的數(shù)學家祖暅(公元前5-6世紀,祖沖之之子)提出了一條原理:“冪勢既同,則積不容異”,這個原理的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.該原理在西方直到十七世紀才由意大利數(shù)學家卡瓦列利發(fā)現(xiàn),比祖暅晚一千一百多年.橢球體是橢圓繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體,如圖,將底面直徑都為2b,高皆為a的橢半球體和已被挖去了圓錐體的圓柱體放置于同一平面β上,用平行于平面β且與平面β任意距離d處的平面截這兩個幾何體,可橫截得到S及S環(huán)兩截面,可以證明S=S環(huán)總成立.據(jù)此,短軸長為$2\sqrt{3}$,長軸為5的橢球體的體積是10π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.某博物館需要志愿者協(xié)助工作,若從6名志愿者中任選3名,則其中甲、乙兩名志愿者恰好同時被選中的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)變量x,y滿足約束條件 $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+2y≥0}\end{array}\right.$,則z=x-2y的最大值為0.

查看答案和解析>>

同步練習冊答案