過橢圓的左焦點且傾斜角為的直線被橢圓截得的弦長為,則離心率=_________
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準(zhǔn)線間的距離為6. 橢圓W的左焦點為,過左準(zhǔn)線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關(guān)于軸的對稱點為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率是,右焦點到上頂點的距離為,點是線段上的一個動點.
(1)求橢圓的方程;
(2)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓與射線y=(x交于點A,過A作傾斜角互補(bǔ)的兩條直線,
它們與橢圓的另一個交點分別為點B和點C.
(Ⅰ)求證:直線BC的斜率為定值,并求這個定值;
(Ⅱ)求三角形ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

20.(本小題滿分14分)

已知圓和橢圓的一個公共點為為橢圓的右焦點,直線與圓相切于點
(Ⅰ)求值和橢圓的方程;
(Ⅱ)圓上是否存在點,使為等腰三角形?若存在,求出點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知點是橢圓上的動點。
(1)求的取值范圍
(2)若恒成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的長軸長為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)已知橢圓
(1)求橢圓的焦點頂點坐標(biāo)、離心率及準(zhǔn)線方程;
(2)斜率為1的直線l過橢圓上頂點且交橢圓于A、B兩點,求|AB|的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如下圖,橢圓中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,A、B是頂點,F(xiàn)是左焦點;當(dāng)BF⊥AB時,此類橢圓稱為 “黃金橢圓”,其離心率為。類比“黃金橢圓”可推算出“黃金雙曲線”的離心率e=         。

查看答案和解析>>

同步練習(xí)冊答案