【題目】如圖,已知動圓過點,且在軸上截得弦的長為4.

1)求動圓圓心的軌跡的方程;

2)已知,過點的直線交軌跡兩點,直線分別與軌跡交于,兩點,設(shè)直線,的斜率分別為,,試問是否為定值?若是,求出此定值;若不是,請說明理由.

【答案】(1);(2為定值,理由見解析.

【解析】

1)設(shè)動圓圓心坐標(biāo),利用弦心距,半弦長,半徑所成的直角三角形列方程,化簡可得;
2)設(shè)A,B的坐標(biāo),AB的方程,與拋物線方程聯(lián)立可得根與系數(shù)關(guān)系,當(dāng)時,可得;當(dāng)時,由AF可得AC的方程,與拋物線方程聯(lián)立可得A,C坐標(biāo)的關(guān)系,同法得B,D坐標(biāo)的關(guān)系,然后C,D坐標(biāo)表示后可轉(zhuǎn)化為A,B的坐標(biāo),從而得到的關(guān)系,得到定值.

1)如圖所示,設(shè)動圓的圓心,由題意,,

當(dāng)不在軸上時,過,則的中點,

,

,化簡得;

又當(dāng)軸上時,由已知可得重合,點的坐標(biāo)也滿足方程

∴動圓圓心的軌跡的方程為;

2為定值,下面給出證明:

設(shè)直線的方程為,,

,,不妨設(shè),

聯(lián)立

,

①當(dāng)時,

,則,,

,,

,.

,同理可得;

②當(dāng)時,直線的方程為,

聯(lián)立,

,故,同理,

(定值).

綜上得為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axbg(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.

(1)求ab,c,d的值;

(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機抽取了100名學(xué)生進行視力檢查,并得到如圖的頻率分布直方圖.

1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);

2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對年級不做眼保健操和堅持做眼保健操的學(xué)生進行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系?

是否做操

是否近視

不做操

做操

近視

44

32

不近視

6

18

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種型號的電視機零配件,為了預(yù)測今年月份該型號電視機零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度月份至月份該型號電視機零配件的銷售量及銷售單價進行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:

月份

銷售單價(元)

銷售量(千件)

(1)根據(jù)1至月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);

(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號電視機零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價,才能使該月利潤達到最大(計算結(jié)果精確到)?

參考公式:回歸直線方程,其中.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

1)寫出曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,已知,的公共點分別為,,當(dāng)時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當(dāng)悠久,日前我國南方農(nóng)戶在播種水稻時一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進行試驗.其中第一組采用直播的方式進行播種,第二組采用撒播的方式進行播種.得到數(shù)據(jù)如下表:

產(chǎn)量(單位:斤)

播種方式

[840,860

[860,880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

約定畝產(chǎn)超過900斤(含900斤)為產(chǎn)量高,否則為產(chǎn)量低

1)請根據(jù)以上統(tǒng)計數(shù)據(jù)估計100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)

2)請根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有99%的把握認為產(chǎn)量高播種方式有關(guān)?

產(chǎn)量高

產(chǎn)量低

合計

直播

散播

合計

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎,抽獎規(guī)則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎勵,假設(shè)顧客抽獎的結(jié)果相互獨立.

)若顧客選擇參加一次抽獎,求他獲得100元現(xiàn)金獎勵的概率;

)某顧客已購物1500元,作為商場經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎?說明理由;

)若顧客參加10次抽獎,則最有可能獲得多少現(xiàn)金獎勵?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護人員和醫(yī)療、生活物資嚴重匱乏,全國各地紛紛馳援.某運輸隊接到從武漢送往該市物資的任務(wù),該運輸隊有8輛載重為6tA型卡車,6輛載重為10tB型卡車,10名駕駛員,要求此運輸隊每天至少運送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運輸隊所花的成本最低為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為2,直線被橢圓截得的線段長為,為坐標(biāo)原點.

1)求橢圓的方程;

2)是否存在過點且斜率為的直線,與橢圓交于、兩點時,作線段的垂直平分線分別交軸、軸于、,垂足為,使得的面積相等,若存在,試求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案