設(shè)關(guān)于x的一元二次方程x2+2ax+4-b2=0.
(1)如果a∈{0,1,2,3},b∈{0,1,2},求方程有實(shí)根的概率;
(2)如果a∈[0,3],b∈[0,2],求方程有實(shí)根的概率;
(3)由(2),并結(jié)合課本“撒豆子”試驗(yàn),請你設(shè)計(jì)一個(gè)估算圓周率π的實(shí)驗(yàn),并給出計(jì)算公式.

(本小題滿分15分)
解:由方程有實(shí)根,則△≥0,得,a2+b2≥4
(1)記“方程有實(shí)根”為事件A,則
答:方程有實(shí)根的概率為.…(5分)
(2)記“方程有實(shí)根”為事件B,則.
答:方程有實(shí)根的概率為.…(10分)
(3)向矩形內(nèi)撒n顆豆子,其中
落在圓內(nèi)的豆子數(shù)為m,由(2)
知,豆子落入圓內(nèi)的概率,
那么,當(dāng)n很大時(shí),比值,即頻率應(yīng)接近于概率P,于是有
由此得到…(15分)
分析:(1)由于a∈{0,1,2,3},b∈{0,1,2},則基本事件總數(shù)為3X4=12種,其中滿足條件方程有實(shí)根,即△≥0,即a2+b2≥4共有8種,代入古典概型公式,即可得到答案.
(2)由于a∈[0,3],b∈[0,2],則基本事件對應(yīng)的平面區(qū)域面積為3X2=6,其中滿足條件方程有實(shí)根,即△≥0,即a2+b2≥4的平面區(qū)域面積為6-π,代入幾何概型公式,即可得到答案.
(3)根據(jù)(2)中結(jié)論,我們易根據(jù)頻率≈概率的原則,得到當(dāng)n很大時(shí),比值,即頻率應(yīng)接近于概率P,于是有.進(jìn)而結(jié)合(2)的答案,得到結(jié)論.
點(diǎn)評:本題考查的知識點(diǎn)是幾何概型與古典概型,根據(jù)已知條件計(jì)算全部基本事件的個(gè)數(shù)(幾何量)和滿足條件的基本事件的個(gè)數(shù)(幾何量)是解答概率問題的關(guān)鍵.(1)(2)中沒有結(jié)論或假設(shè)共扣(2分),(3)中意思表述基本清楚即給全分,也可以直接利用(2)的結(jié)論推出公式,公式錯誤扣(2分).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)關(guān)于x的一元二次方程x-x+1=0(n∈N)有兩根α和β,且滿足6α-2αβ+6β=3.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆新疆農(nóng)七師高級中學(xué)高二第一階段性考試數(shù)學(xué)試卷(解析版) 題型:解答題

.已知關(guān)于x的一元二次方程x-2(a-2)x-b+16=0.

(1)若a、b是一枚骰子先后投擲兩次所得到的點(diǎn)數(shù),求方程有兩個(gè)正實(shí)數(shù)根的概率;

(2)若a∈[2,6],b∈[0,4],求一元二次方程沒有實(shí)數(shù)根的概率

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省高一下學(xué)期第一次月考數(shù)學(xué)試卷 題型:解答題

((本小題滿分12分)

設(shè)關(guān)于x的一元二次方程x-x+1=0(n∈N)有兩根α和β,且滿足 6α-2αβ+6β=3.

(1)試用表示a;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(14分)設(shè)有關(guān)于x的一元二次方程x-2ax+b=0.

(1)若a是從0、1、2、3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0、1、2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程沒有實(shí)根的概率。

(2))若a是從區(qū)間[0,3]內(nèi)任取的一個(gè)數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個(gè)數(shù),求上述方程沒有實(shí)根的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省橫峰中學(xué)高一下學(xué)期第一次月考數(shù)學(xué)試卷 題型:解答題

((本小題滿分12分)
設(shè)關(guān)于x的一元二次方程x-x+1=0(n∈N)有兩根α和β,且滿足6α-2αβ+6β=3.
(1)試用表示a;

查看答案和解析>>

同步練習(xí)冊答案