若函數(shù)f(x)=lg(x2-ax-3)在(-∞,-1 )上是減函數(shù),則a的取值范圍是________.

[2,+∞)
分析:由題意可得 y=x2-ax-3在(-∞,-1 )上是減函數(shù),且y>0;故有,且1+a-3≥0.解不等式求得
a的取值范圍.
解答:由題意可得 y=x2-ax-3在(-∞,-1 )上是減函數(shù),且y>0.
故有,且1+a-3≥0.
解得 a≥2,故a的取值范圍是[2,+∞),
故答案為:[2,+∞).
點評:本題主要考查對數(shù)函數(shù)的單調性和特殊點,體現(xiàn)了轉化的數(shù)學思想,得到,且1+a-3≥0,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題;其中所有正確命題的序號是
①,②,③(多寫少寫均作0分)
①,②,③(多寫少寫均作0分)

①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=2-x(x>0)的反函數(shù)是y=-log2x(0<x<1);
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關于直線x=0對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如下四個命題:
①?x∈(0,+∞),x2>x3;
②?x∈(0,+∞),x>ex;
③函數(shù)f(x)定義域為R,且f(2-x)=f(x),則f(x)的圖象關于直線x=1對稱;
④若函數(shù)f(x)=lg(x2+ax-a)的值域為R,則a≤-4或a≥0;
其中正確的命題是
③④
③④
.(寫出所有正確命題的題號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①已知函數(shù)f(x)=(
1
2x-1
)•x2-sinx+a(a為常數(shù))
,且f(loga1000)=3,則f(lglg2)=3;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a∈(-4,0);
③關于x的方程(
1
2
)x=lga
有非負實數(shù)根,則實數(shù)a的取值范圍是(1,10);
④如圖,三棱柱ABC-A1B1C1中,E、F分別是AB,AC的中點,平面EB1C1F將三棱柱分成幾何體AEF-AB1C1和B1C1-EFCB兩部分,其體積分別為V1,V2,則V1:V2=7:5.
其中正確命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=lg(mx2+mx+1)的定義域為R,則m的取值范圍是
[0,4)
[0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=lg(ax2+x+1)在區(qū)間(-1,+∞)上為單調遞增函數(shù),則實數(shù)a的取值范圍是
[0,
1
2
]
[0,
1
2
]

查看答案和解析>>

同步練習冊答案