13.已知函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(I)判斷并證明f(x)的奇偶性;
(II)若函數(shù)F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅲ)若對(duì)于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,求實(shí)數(shù)m的取值范圍.

分析 (I)f(x)的定義域?yàn)镽,利用奇函數(shù)的定義證明f(x)的奇偶性;
(II)若函數(shù)F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零點(diǎn),$\frac{{2}^{x}-1}{{2}^{x}+1}$-$\frac{3-{2}^{x}}{k}$-1=0在[-1,1]有解,分離參數(shù),即可求實(shí)數(shù)k的取值范圍;
(Ⅲ)若對(duì)于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,則對(duì)于任意a∈[1,3],a2-2algm>1-2a2,lgm<$\frac{1}{2}$(3a-$\frac{1}{a}$),求出右邊的最小值,即可求實(shí)數(shù)m的取值范圍.

解答 解:(I)f(x)的定義域?yàn)镽,則:
f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-f(x),
∴函數(shù)是奇函數(shù);
(II)若函數(shù)F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零點(diǎn),則$\frac{{2}^{x}-1}{{2}^{x}+1}$-$\frac{3-{2}^{x}}{k}$-1=0在[-1,1]有解,
∴k=$\frac{1}{2}$(2x-3)(2x+1)=$\frac{1}{2}$(2x-1)2-2,
∵-1≤x≤1,∴$\frac{1}{2}$≤2x≤2,
∴-2≤k≤-$\frac{3}{2}$;
(Ⅲ)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$是R上的增函數(shù),
若對(duì)于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,
則對(duì)于任意a∈[1,3],a2-2algm>1-2a2
∴l(xiāng)gm<$\frac{1}{2}$(3a-$\frac{1}{a}$)
∵y=3a-$\frac{1}{a}$在[1,3]上單調(diào)遞增,
∴ymin=1,
∴l(xiāng)gm<1,
∴0<m<10.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性,考查函數(shù)的零點(diǎn),恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)f(x)=$\sqrt{lo{g}_{3}(3x-1)}$+7的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若圓錐的高等于底面直徑,則它的底面積與側(cè)面積之比為( 。
A.1:2B.1:$\sqrt{3}$C.1:$\sqrt{5}$D.$\sqrt{3}$:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)=$\left\{\begin{array}{l}{2x-3(x>0)}\\{g(x)(x<0)}\end{array}\right.$是偶函數(shù),則g(x)=-2x-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a>0,h(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一點(diǎn)x0,使h(x0)>g(x0)成立,則實(shí)數(shù)a的取值范圍為(  )
A.($\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$,+∞)B.($\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$+∞)C.(-∞,$\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$)D.(-∞,$\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a>0,f(x)=$\frac{{2}^{x}}{a}$+$\frac{a}{{2}^{x}}$是定義在R上的偶函數(shù).
(1)求實(shí)數(shù)a;
(2)求f(x)在x∈[-1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求以曲線2x2+y2-4x-10=0和y2=2x-2的交點(diǎn)與原點(diǎn)的連線為漸近線,且實(shí)軸長(zhǎng)為12的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a1•a19=100,則a9•a10•a11的值為1000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=loga(a2x-4ax+4),0<a<1,則使f(x)>0的x的取值范圍是(loga3,loga2)∪(loga2,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案