15.設(shè)全集U=R,A={x|2x2-x=0},B={x|mx2-mx-1=0},其中x∈R,如果(∁UA)∩B=∅,求m的取值范圍.

分析 把集合A化簡后,求其補(bǔ)集,然后根據(jù)(∁UA)∩B=∅選取m的取值范圍.

解答 解:由題意$A=\left\{{0,\frac{1}{2}}\right\}$,
因?yàn)椋?#8705;UA)∩B=∅,所以B⊆A,
當(dāng)B=∅時(shí),當(dāng)m=0,符合題意,
當(dāng)m≠0時(shí),△=m2+4m<0,解得-4<m<0,符合題意,
當(dāng)B≠∅時(shí),當(dāng)B中只有一個(gè)元素時(shí),
△=0,即m2+4m=0,解得m=0(舍),m=-4,
檢驗(yàn),此時(shí)$B=\left\{{x|-4{x^2}+4x-1=0}\right\}=\left\{{\frac{1}{2}}\right\}$,符合題意;
當(dāng)B中有兩個(gè)元素時(shí),由題意$B=\left\{{0,\frac{1}{2}}\right\}$,將0,$\frac{1}{2}$代入方程可知此時(shí)無解.
綜上所述,m的取值范圍為-4≤m≤0.

點(diǎn)評(píng) 本題考查了交、并、補(bǔ)集的混合運(yùn)算,解答的關(guān)鍵是熟練交、并、補(bǔ)集的概念,同時(shí)注意端點(diǎn)值得選取,屬易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.θ為銳角,sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,則tanθ+$\frac{1}{tanθ}$=( 。
A.$\frac{25}{12}$B.$\frac{7}{24}$C.$\frac{24}{7}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=|x|-x+1,則不等式f(1-x2)>f(1-2x)的解集為{x|x>2或x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xln(x+$\sqrt{2a+{x}^{2}}$(a>0)為偶函數(shù).
(1)求a的值;
(2)求g(x)=ax2+2x+1在區(qū)間[-6,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={0,1},B={x,y,z},則從集合A到集合B的映射可能有(  )種.
A.6B.8C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若點(diǎn)(sin$\frac{2π}{3}$,cos$\frac{2π}{3}}$)在角α的終邊上,則sinα的值為(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}}$)+b(ω>0),且函數(shù)圖象的對(duì)稱中心到對(duì)稱軸的最小距離為$\frac{π}{4}$,當(dāng)x∈[0,$\frac{π}{4}}$]時(shí),f(x)的最大值為1.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位長度得到函數(shù)g(x)圖象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x,y滿足$\left\{\begin{array}{l}y≥2x\\ x+y≤3\\ x≥a\end{array}$且z=2x+y的最大值是其最小值的2倍,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}中,a1=1,且a2+2,a3,a4-2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案