【題目】已知橢圓:的右焦點(diǎn)為點(diǎn)的坐標(biāo)為,為坐標(biāo)原點(diǎn),是等腰直角三角形.
(1)求橢圓的方程;
(2)經(jīng)過點(diǎn)作直線交橢圓于兩點(diǎn),求面積的最大值;
(3)是否存在直線交橢圓于兩點(diǎn),使點(diǎn)為的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(1);(2);(3).
【解析】
(1)由是等腰直角三角形,可得,從而可得橢圓方程;
(2)設(shè)過點(diǎn)的直線的方程為,的橫坐標(biāo)分別為,求出的最大值,即可求得面積的最大值;
(3)假設(shè)存在直線交橢圓于兩點(diǎn),且使點(diǎn)為的垂心,設(shè)直線的方程為,代入橢圓方程,利用韋達(dá)定理結(jié)合,即可求得結(jié)論.
解:(1)由是等腰直角三角形,可得,
故橢圓方程為;
(2)設(shè)過點(diǎn)的直線的方程為,的橫坐標(biāo)分別為,
將線的方程為代入橢圓方程,
消元可得,
∴,
,
,
令,則
令,則(當(dāng)且僅當(dāng)時取等號)
又面積,
∴△AOB面積的最大值為;
(3)假設(shè)存在直線交橢圓于兩點(diǎn),且使點(diǎn)為的垂心,
設(shè),
因?yàn)?/span>,所以.
于是設(shè)直線的方程為,代入橢圓方程,
消元可得.
由,得,且,
由題意應(yīng)有,所以,
所以.
整理得.
解得或.
經(jīng)檢驗(yàn),當(dāng)時,不存在,故舍去.
∴當(dāng)時,所求直線存在,且直線l的方程
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是為菱形,在平面內(nèi)的射影恰為線段的中點(diǎn).
(1)求證:;
(2)若,,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C:上,該橢圓的左頂點(diǎn)A到直線的距離為.
求橢圓C的標(biāo)準(zhǔn)方程;
若線段MN平行于y軸,滿足,動點(diǎn)P在直線上,滿足證明:過點(diǎn)N且垂直于OP的直線過橢圓C的右焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,離心率.過的直線與橢圓相交于兩點(diǎn),且的周長為.
(1)求橢圓的方程;
(2)若點(diǎn)位于第一象限,且,求的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某大學(xué)中隨機(jī)選取7名女大學(xué)生,其身高x(單位:cm)和體重y(單位:kg)數(shù)據(jù)如下表:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
身高x | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
體重y | 52 | 52 | 53 | 55 | 54 | 56 | 56 |
(1)求y關(guān)于x的回歸方程;
(2)利用(1)中的回歸方程,分析這7名女大學(xué)生的身高和體重的變化,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝第一個農(nóng)民豐收節(jié),西部山區(qū)某村統(tǒng)計(jì)了自2011年以來每年的年總收入,其中2018年統(tǒng)計(jì)的是1月到8月的總收入,統(tǒng)計(jì)結(jié)果如圖所示.根據(jù)圖形,下列四個判斷中,錯誤的是( )
A.從2012年起,年總收入逐年增加B.2017年的年總收入在2016年的基礎(chǔ)上翻了番
C.年份數(shù)與年總收入成正相關(guān)D.由圖可預(yù)測從2014年起年總收入增長加快
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正所在平面垂直平面,且邊在平面內(nèi),過、分別作兩個平面、(與正所在平面不重合),則以下結(jié)論錯誤的是( )
A.存在平面與平面,使得它們的交線和直線所成角為
B.直線與平面所成的角不大于
C.平面與平面所成銳二面角不小于
D.平面與平面所成銳二面角不小于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,焦點(diǎn)為,直線交拋物線于兩點(diǎn),是線段的中點(diǎn),過作軸的垂線交拋物線于點(diǎn).
(1)求拋物線的焦點(diǎn)坐標(biāo);
(2)若拋物線上有一點(diǎn)到焦點(diǎn)的距離為,求此時的值;
(3)是否存在實(shí)數(shù),使是以為直角頂點(diǎn)的直角三角形?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從4名男同學(xué)中選出2人,6名女同學(xué)中選出3人,并將選出的5人排成一排.
(1)共有多少種不同的排法?
(2)若選出的2名男同學(xué)不相鄰,共有多少種不同的排法?(用數(shù)字表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com