5.若樣本x1+1,x2+1,…,xn+1的平均數(shù)為10,其方差為2,則樣本x1+2,x2+2,…,xn+2的平均數(shù)為11,方差為2.

分析 利用樣本的平均數(shù)、方差的性質(zhì)直接求解.

解答 解:∵樣本x1+1,x2+1,…,xn+1的平均數(shù)為10,其方差為2,
∴樣本x1+2,x2+2,…,xn+2的平均數(shù)為10+1=11,
方差為:12×2=2.
故答案為:11,2.

點評 本題考查樣本的平均數(shù)和方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,考查運用統(tǒng)計知識解決簡單實際問題的能力,數(shù)據(jù)處理能力和運用意識.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},0≤x≤1\\ 1,1<x≤2\end{array}\right.$則定積分$\int_0^2{f(x)dx}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若z=4+3i(i為虛數(shù)單位),則$\frac{\overline{z}}{|z|}$=( 。
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)如下變換得到:現(xiàn)將g(x)圖象上所有點的縱坐標(biāo)伸長到原來的2倍,(橫坐標(biāo)不變),再講所得的圖象向右平移$\frac{π}{2}$個單位長度.
(1)求函數(shù)f(x)的解析式,并求其圖象的對稱軸的方程;
(2)已知關(guān)于x的方程f(x)+g(x)=m在[0,2π]內(nèi)有兩個不同的解α,β,
①求實數(shù)m的取值范圍.
②證明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上有一點M(-4,$\frac{9}{5}$)在拋物線y2=2px(p>0)的準(zhǔn)線l上,拋物線的焦點也是橢圓焦點.
(1)求橢圓方程;
(2)若點N在拋物線上,過N作準(zhǔn)線l的垂線,垂足為Q,求|MN|+|NQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在復(fù)平面內(nèi),復(fù)數(shù)z=1-i對應(yīng)的向量為$\overrightarrow{OP}$,復(fù)數(shù)z2對應(yīng)的向量為$\overrightarrow{OQ}$,那么向量$\overrightarrow{PQ}$對應(yīng)的復(fù)數(shù)為( 。
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.取一個長度為4m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長度都不少于1m的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)
性別
0~20002001~50005001~80008001~10000>10000
12368
021062
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型懈怠型總計
14822
61218
總計202040
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

同步練習(xí)冊答案